File size: 60,461 Bytes
ff66cf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014


================= Task and Asset Design!

>>> Prompt: 
You are an AI in robot simulation code and task design. I will provide you some example tasks, code implementation, and some guidelines for how to generate tasks and then you will help me generate a new task. My goal is to design creative and feasible tasks for tabletop manipulation. I will first ask you to describe the task in natural languages and then will let you write the code for it. 

=========
Here are all the assets. Please try to come up with tasks using only these assets. 
"""
- stacking: ['stacking/block.urdf', 'stacking/stand.urdf']
- corner: ['corner/corner-template.urdf']
- ball: ['ball/ball-template.urdf', 'ball/ball.urdf']
- sphere: ['sphere/sphere.urdf', 'sphere/sphere-template.urdf']
- zone: ['zone/zone.urdf', 'zone/zone.obj']
- block: ['block/block.urdf', 'block/block_for_anchors.urdf', 'block/small.urdf']
- pallet: ['pallet/pallet.urdf', 'pallet/pallet.obj']
- cylinder: ['cylinder/cylinder-template.urdf']
- container: ['container/container-template.urdf']
- bowl: ['bowl/bowl.urdf']
- square: ['square/square-template.urdf']
- box: ['box/box-template.urdf']
- line: ['line/line-template.urdf']
- insertion: ['insertion/ell.urdf', 'insertion/fixture.urdf']



"""

There are certain rules on the asset usage.
1. Sweeping piles task must have small blocks `block/small.urdf`. Only the piles can be swept in all assets
2. Insertion tasks must have `insertion/ell.urdf` and `insertion/fixture.urdf`. Only the fixture can be inserted in all assets.
3. Rope tasks usually come with 'square/square-template.urdf'.

=========
Here are some examples of good tasks. Try to be creative and high standard, and avoid overlapping with these tasks. 

- palletizing-boxes: {'assets-used': ['pallet/pallet.urdf', 'box/box-template.urdf'], 'task-description': 'pick up homogeneous fixed-sized boxes and stack them in transposed layers on the pallet.', 'task-name': 'palletizing-boxes'}
- build-car: {'task-name': 'build-car', 'task-description': 'Construct a simple car structure using blocks and cylinders.', 'assets-used': ['block/block.urdf', 'ball/ball-template.urdf']}
- sorting-blocks-into-pallets: {'task-name': 'sorting-blocks-into-pallets', 'task-description': 'Pick up blocks of four different colors (red, blue, green, yellow) and place them into four separate pallets of matching color. The pallets are placed in a row and the blocks are scattered randomly on the table.', 'assets-used': ['block/block.urdf', 'pallet/pallet.urdf']}
- color-coordinated-insertion: {'task-name': 'color-coordinated-insertion', 'task-description': 'There are three insertion fixtures and three ell shaped blocks of different colors (red, blue, green) on the table top. The task is to pick up the ell shaped blocks and insert each one of them into the fixture of the same color. However, the ell blocks should be inserted in a specific sequence - red first, then blue, and finally green. This task is challenging due to the precision required for insertion and the need for color coordination and sequencing.', 'assets-used': ['insertion/ell.urdf', 'insertion/fixture.urdf']}
- create-pyramid-with-color-coded-ells: {'task-name': 'create-pyramid-with-color-coded-ells', 'task-description': "There are four insertion ell-shaped objects ('insertion/ell.urdf') of different colors (red, blue, yellow, and green) placed randomly on the tabletop. The task is to pick up each of these objects and stack them onto a fixed-size pallet in the shape of a pyramid. The order of the pyramid from bottom to top should be red, blue, yellow, and green.", 'assets-used': ['insertion/ell.urdf', 'pallet/pallet.urdf']}
- color-coordinated-block-bridge: {'task-name': 'color-coordinated-block-bridge', 'task-description': 'Construct a bridge by interleaving three differently colored blocks (red, blue, and green) on a pallet in a specific sequence - red block at the edges, blue block in the middle, and a green block on top of the red and blue blocks. Repeat this sequence until a bridge is formed across the length of the pallet.', 'assets-used': ['block/block.urdf', 'pallet/pallet.urdf']}
- color-coordinated-cylinder-pyramid: {'task-name': 'color-coordinated-cylinder-pyramid', 'task-description': 'Construct a pyramid on a pallet using four cylinders of different colors (red, blue, green, and yellow). The first level should consist of a red cylinder and a blue cylinder side by side. The second level should consist of a green cylinder placed on top of the red and blue cylinders. The third and final level should consist of a yellow cylinder placed on top of the green cylinder. The challenge lies in the precise placement of cylinders, maintaining the balance of the structure, and correct color arrangement.', 'assets-used': ['cylinder/cylinder-template.urdf', 'pallet/pallet.urdf']}
- sequential-block-insertion: {'task-name': 'sequential-block-insertion', 'task-description': 'There are four blocks of different colors (red, blue, green, yellow) and four fixtures of matching colors. The task involves picking up each block and inserting it into the fixture of the same color, in the specific sequence of red, blue, green, and yellow. However, the challenge lies in the fact that the blocks and fixtures are initially arranged in a mixed order, demanding careful navigation, precise insertion, color matching, and sequence following.', 'assets-used': ['insertion/fixture.urdf', 'block/block.urdf']}
- mixed-color-block-barrier-insertion: {'task-name': 'mixed-color-block-barrier-insertion', 'task-description': 'There are four different colored blocks (red, blue, green, and yellow), and four fixtures in corresponding colors. Two barriers, each made of three blocks (orange, purple, and brown), are placed in between the blocks and fixtures, forming a path that the robot must navigate. The task involves picking up each colored block, navigating the barriers, and inserting each block into the fixture of the same color. The fixtures are arranged in a sequence from left to right: red, blue, green, and yellow, providing a challenge in precise navigation, color coordination, and insertion.', 'assets-used': ['block/block.urdf', 'insertion/fixture.urdf']}
- color-coordinated-ball-stacking: {'task-name': 'color-coordinated-ball-stacking', 'task-description': 'There are four balls of different colors (red, blue, green, yellow), and four containers of matching colors on the table. The task is to pick up each ball and stack it on top of the corresponding colored container. However, the stacking should be done in a specific color sequence - blue at the bottom, followed by yellow, then green, and finally red at the top. This task enforces challenging skills due to the precision required for stacking the balls, color coordination, and sequencing.', 'assets-used': ['ball/ball-template.urdf', 'container/container-template.urdf']}




=========
Here are some tasks that you have come up with before. Try to have a high-standard and avoid overlapping with these tasks. For instance, `bowl_ball_placement` and `sort_balls_in_bowls` are the same task. `pile_boxes_in_corner` and `stack_blocks_into_pallet` are similar tasks, `align-cylinder-in-corner` and `align-cylinder-corner` are similar.
Past Tasks:

- sort-and-stack-clr-blocks: {'task-name': 'sort-and-stack-clr-blocks', 'task-description': 'Pick up four blocks of different colors (red, blue, green, yellow) and place them into separate corners of a pallet. After sorting, stack them in a specific sequence on top of the pallet. The bottom of the stack should start with a green block followed by a blue, then red, and finally a yellow block at the top.', 'assets-used': ['block/block.urdf', 'pallet/pallet.urdf']}
- align-rope-cross-zone: {'task-name': 'align-rope-cross-zone', 'assets-used': ['zone/zone.urdf'], 'task-description': 'Align a deformable rope across the diagonal of a zone marked on the tabletop.'}
- color-ordered-insertion-new: {'task-name': 'color-ordered-insertion-new', 'task-description': 'There are four differently-colored ell objects (red, blue, green, yellow) and a corresponding set of color-coded fixtures. The task involves picking up each ell object and inserting it into the matching color fixture in a specific order: from left to right, insert red, blue, green, and finally yellow. The challenge lies in the precise manipulation of the ell objects and the color-coordination required.', 'assets-used': ['insertion/ell.urdf', 'insertion/fixture.urdf']}
- color-ordered-blocks-on-pallet: {'task-name': 'color-ordered-blocks-on-pallet', 'task-description': 'On a table there are six different colored blocks (red, blue, green, yellow, orange, and purple), a pallet, and a small corner structure. These colored blocks are arranged randomly within the small corner structure. The task involves picking up each colored block and placing it onto the pallet in specific color sequence: red, blue, green, yellow, orange, and finally purple.', 'assets-used': ['block/block.urdf', 'pallet/pallet.urdf', 'corner/corner-template.urdf']}
- guided-block-path: {'task-name': 'guided-block-path', 'task-description': 'On the tabletop, there are four colored blocks (red, blue, green, and yellow) and four lines of the corresponding colors. The task is to pick up each block and move it along the line of the same color from start to end. The challenge lies in precise navigation along the line, color coordination, and block manipulation.', 'assets-used': ['block/block.urdf', 'line/line-template.urdf']}
- packing-boxes: {'assets-used': ['container/container-template.urdf', 'box/box-template.urdf'], 'task-description': 'pick up randomly sized boxes and place them tightly into a container.', 'task-name': 'packing-boxes'}
- color-coordinated-sphere-and-cylinder-assembly: {'task-name': 'color-coordinated-sphere-and-cylinder-assembly', 'task-description': 'The robot starts with four spheres of different colors (red, blue, green, yellow) and four cylinders of matching colors. The task is to pick up each sphere and place it on top of the cylinder of the same color, forming four sphere-and-cylinder pairs. However, the challenge here is to do this in a specific color sequence - red, blue, green, and finally yellow.', 'assets-used': ['sphere/sphere-template.urdf', 'cylinder/cylinder-template.urdf']}
- pyramid-blocks-assemble: {'task-name': 'pyramid-blocks-assemble', 'task-description': 'Construct a pyramid using nine blocks in a specific color order on a pallet. The bottom layer should contain five blocks: red, blue, green, yellow, and orange (in that order from left to right). The middle layer should consist of three blocks: yellow, red, and blue (from left to right). The top layer should contain a single green block. The pyramid requires careful placement and color matching.', 'assets-used': ['block/block.urdf', 'pallet/pallet.urdf']}
- insert-cylinder-in-container: {'task-name': 'insert-cylinder-in-container', 'task-description': 'Pick up a blue cylindrical block and place it into an empty container.', 'assets-used': ['cylinder/cylinder-template.urdf', 'container/container-template.urdf']}
- sphere-container-color-match: {'task-name': 'sphere-container-color-match', 'task-description': 'On a tabletop, there are four spheres of different colors (red, blue, green, and yellow) inside four containers of a different color (red, blue, green, and yellow). The task is to pick up each sphere and place it into a container of the same color. The task is challenging due to the manipulation of spherical objects and the color coordination required.', 'assets-used': ['sphere/sphere.urdf', 'container/container-template.urdf']}






=========
Here are some bad example task instances with reasons.
{
    "task_name": "sort-color-blocks",
    "task_descriptions": "Pick up differently colored blocks and place them into separate bowls of matching color."
    "assets-used": ["bowl.urdf", "box/box-template.urdf],
}
reasons: not interesting because it overlaps with the current task `put-block-in-bowl`.

{
    "task-name": "guided-ball-maze",
    "task-description": "Navigate a small ball through a maze by tilting the maze board to reach the target zone.",
    "assets-used": ["zone-template.urdf", "square-template.urdf", "ball.urdf", "maze.urdf"],
}
reasons: the language descriptions are too ambiguous. Navigation is also hard to complete. Also maze.urf does not exist.

{
    "task-name": "insert_cylinder_in_sphere",
    "task-description": "Pick up the cylinder and insert it into the sphere with an opening on top.",
    "assets-used": ["cylinder/cylinder-template.urdf", "sphere/sphere-template.urdf"],
}
reasons: this task does not make sense. The sphere does not have an opening on top, and you cannot insert a cylinder into a sphere. Similarly you cannot create task like `insert-ball-into-cylinder`.

{
    "task-name": "ball-box-obstacle-course",
    "task-description": "Navigate a ball through an obstacle course created by randomly placed boxes and finally place it inside a container.",
    "assets-used": ["ball/ball-template.urdf", "box/box-template.urdf", "container/container-template.urdf"]
}
reasons: Navigate the ball is not related to tabletop manipulation tasks.

{
    "task-name": "ball-in-box",
    "task-description": "Use a cable to guide a ball into an open box.",
    "assets-used": ["cable/cable.urdf", "ball/ball-template.urdf", "box/box-template.urdf"]
}
reasons: This task is too hard since it involves interaction of the cable and the ball and cannot be easily completed.

{
    "task-name": "ball-in-container",
    "task-description": "Use the spatula to lift a ball over a wall of boxes and drop it into a container.",
    "assets-used": ["ball/ball-template.urdf", "box/box-template.urdf", "container/container-template.urdf"]
}
reasons: The only action primitives as pick and place. One cannot use a spatula to lift an object.

{
    "task-name": "line-ball-sorting",
    "task-description": "Move balls of different colors along a single green line, placing each ball in a designated colored box at the end of the line. The challenge includes precision in maintaining the ball on the line and the correct identification of the box color corresponding to each ball.",
    "assets-used": ["ball/ball-template.urdf", "box/box-template.urdf", "line/single-green-line-template.urdf"]
}
reasons: Piling or stacking balls are physically infeasible in the simulation.

{
    "task-name": "sweep-and-stack-blocks",
    "task-description": "Sweep a pile of small red and blue blocks into two separate zones marked on the tabletop. Then pick up these blocks in each zone and stack them in two towers according to their colors, with the red tower higher than the blue.",
    "assets-used": ["zone/zone.urdf", "block/small.urdf"]
}
reasons: Cannot do sweeping and stacking in the same task.


=========
Now please describe the new task in natural languages and explain its novelty and challenges. Format the answer in a python dictionary with keys "task-name" and value type string, "task-description" (one specific sentence) and value type string with lower-case and separated by hyphens, and "assets-used" and value type list of strings. Try to be as creative as possible.

Note:
- Do not use assets that are not in the list above. 
- Tasks that have more colors and shapes are interesting.
- Be as specific as possible about the number, shape, and color of each asset in the task descriptions. 
- The task need to obey physics and remain feasible.


>>> Answer: 
{
    "task-name": "container-pyramid-construction",
    "task-description": "On a tabletop, there are containers of different shapes (square, circle, and triangle) and three different colors (red, blue, and green). The task is to pick up each container and stack them on a pallet in the shape of a pyramid with three levels: the bottom level should contain three containers (one of each shape) of the same color, the middle level should contain two containers of the same shape but different color, and the top level should contain one container of a different color and shape. The challenge lies in the precise alignment of the containers, maintaining the balance of the structure, and correct color and shape arrangement.",
    "assets-used": ["container/container-template.urdf", "pallet/pallet.urdf"]
} 

Novelty and Challenges: 
1. This task introduces a novel combination of stacking and color-shape coordination skills. 
2. The task requires the robot to recognize different colors and shapes, which adds a level of complexity. 
3. The robot also needs to plan the pick and place movements so as to maintain the balance of the stacked pyramid structure, posing a challenge in maintaining stability and preventing the pyramid from toppling over during the stacking process.

================= API Preview!

>>> Prompt: 
Before writing the code for the task "container-pyramid-construction". Here are some APIs that are defined. Please confirm that you understand these APIs.

"""
class Task():
    """Base Task class."""

    def __init__(self):
        self.ee = Suction
        self.mode = 'train'
        self.sixdof = False
        self.primitive = primitives.PickPlace()
        self.oracle_cams = cameras.Oracle.CONFIG

        # Evaluation epsilons (for pose evaluation metric).
        self.pos_eps = 0.01
        self.rot_eps = np.deg2rad(15)

        # Workspace bounds.
        self.pix_size = 0.003125
        self.bounds = np.array([[0.25, 0.75], [-0.5, 0.5], [0, 0.3]])
        self.zone_bounds = np.copy(self.bounds)

        self.goals = []
        self.lang_goals = []
        self.task_completed_desc = "task completed."
        self.progress = 0
        self._rewards = 0
        self.assets_root = None

    def reset(self, env):
        if not self.assets_root:
            raise ValueError('assets_root must be set for task, '
                             'call set_assets_root().')
        self.goals = []
        self.lang_goals = []
        self.progress = 0  # Task progression metric in range [0, 1].
        self._rewards = 0  # Cumulative returned rewards.

    # -------------------------------------------------------------------------
    # Oracle Agent
    # -------------------------------------------------------------------------

    def oracle(self, env):
        """Oracle agent."""
        OracleAgent = collections.namedtuple('OracleAgent', ['act'])

        def act(obs, info):
            """Calculate action."""

            # Oracle uses perfect RGB-D orthographic images and segmentation masks.
            _, hmap, obj_mask = self.get_true_image(env)

            # Unpack next goal step.
            objs, matches, targs, replace, rotations, _, _, _ = self.goals[0]

            # Match objects to targets without replacement.
            if not replace:

                # Modify a copy of the match matrix.
                matches = matches.copy()

                # Ignore already matched objects.
                for i in range(len(objs)):
                    object_id, (symmetry, _) = objs[i]
                    pose = p.getBasePositionAndOrientation(object_id)
                    targets_i = np.argwhere(matches[i, :]).reshape(-1)
                    for j in targets_i:
                        if self.is_match(pose, targs[j], symmetry):
                            matches[i, :] = 0
                            matches[:, j] = 0

            # Get objects to be picked (prioritize farthest from nearest neighbor).
            nn_dists = []
            nn_targets = []
            for i in range(len(objs)):
                object_id, (symmetry, _) = objs[i]
                xyz, _ = p.getBasePositionAndOrientation(object_id)
                targets_i = np.argwhere(matches[i, :]).reshape(-1)
                if len(targets_i) > 0:
                    targets_xyz = np.float32([targs[j][0] for j in targets_i])
                    dists = np.linalg.norm(
                        targets_xyz - np.float32(xyz).reshape(1, 3), axis=1)
                    nn = np.argmin(dists)
                    nn_dists.append(dists[nn])
                    nn_targets.append(targets_i[nn])

                # Handle ignored objects.
                else:
                    nn_dists.append(0)
                    nn_targets.append(-1)
            order = np.argsort(nn_dists)[::-1]

            # Filter out matched objects.
            order = [i for i in order if nn_dists[i] > 0]

            pick_mask = None
            for pick_i in order:
                pick_mask = np.uint8(obj_mask == objs[pick_i][0])

                # Erode to avoid picking on edges.
                # pick_mask = cv2.erode(pick_mask, np.ones((3, 3), np.uint8))

                if np.sum(pick_mask) > 0:
                    break

            # Trigger task reset if no object is visible.
            if pick_mask is None or np.sum(pick_mask) == 0:
                self.goals = []
                self.lang_goals = []
                print('Object for pick is not visible. Skipping demonstration.')
                return

            # Get picking pose.
            pick_prob = np.float32(pick_mask)
            pick_pix = utils.sample_distribution(pick_prob)
            # For "deterministic" demonstrations on insertion-easy, use this:
            # pick_pix = (160,80)
            pick_pos = utils.pix_to_xyz(pick_pix, hmap,
                                        self.bounds, self.pix_size)
            pick_pose = (np.asarray(pick_pos), np.asarray((0, 0, 0, 1)))

            # Get placing pose.
            targ_pose = targs[nn_targets[pick_i]]
            obj_pose = p.getBasePositionAndOrientation(objs[pick_i][0])
            if not self.sixdof:
                obj_euler = utils.quatXYZW_to_eulerXYZ(obj_pose[1])
                obj_quat = utils.eulerXYZ_to_quatXYZW((0, 0, obj_euler[2]))
                obj_pose = (obj_pose[0], obj_quat)
            world_to_pick = utils.invert(pick_pose)
            obj_to_pick = utils.multiply(world_to_pick, obj_pose)
            pick_to_obj = utils.invert(obj_to_pick)
            place_pose = utils.multiply(targ_pose, pick_to_obj)

            # Rotate end effector?
            if not rotations:
                place_pose = (place_pose[0], (0, 0, 0, 1))

            place_pose = (np.asarray(place_pose[0]), np.asarray(place_pose[1]))

            return {'pose0': pick_pose, 'pose1': place_pose}

        return OracleAgent(act)

    # -------------------------------------------------------------------------
    # Reward Function and Task Completion Metrics
    # -------------------------------------------------------------------------

    def reward(self):
        """Get delta rewards for current timestep.

        Returns:
          A tuple consisting of the scalar (delta) reward, plus `extras`
            dict which has extra task-dependent info from the process of
            computing rewards that gives us finer-grained details. Use
            `extras` for further data analysis.
        """
        reward, info = 0, {}

        # Unpack next goal step.
        objs, matches, targs, _, _, metric, params, max_reward = self.goals[0]

        # Evaluate by matching object poses.
        if metric == 'pose':
            step_reward = 0
            for i in range(len(objs)):
                object_id, (symmetry, _) = objs[i]
                pose = p.getBasePositionAndOrientation(object_id)
                targets_i = np.argwhere(matches[i, :]).reshape(-1)
                for j in targets_i:
                    target_pose = targs[j]
                    if self.is_match(pose, target_pose, symmetry):
                        step_reward += max_reward / len(objs)
                        print(f"object {i} match with target {j} rew: {step_reward}")
                        break

        # Evaluate by measuring object intersection with zone.
        elif metric == 'zone':
            zone_pts, total_pts = 0, 0
            obj_pts, zones = params
            for zone_idx, (zone_pose, zone_size) in enumerate(zones):

                # Count valid points in zone.
                for obj_idx, obj_id in enumerate(obj_pts):
                    pts = obj_pts[obj_id]
                    obj_pose = p.getBasePositionAndOrientation(obj_id)
                    world_to_zone = utils.invert(zone_pose)
                    obj_to_zone = utils.multiply(world_to_zone, obj_pose)
                    pts = np.float32(utils.apply(obj_to_zone, pts))
                    if len(zone_size) > 1:
                        valid_pts = np.logical_and.reduce([
                            pts[0, :] > -zone_size[0] / 2, pts[0, :] < zone_size[0] / 2,
                            pts[1, :] > -zone_size[1] / 2, pts[1, :] < zone_size[1] / 2,
                            pts[2, :] < self.zone_bounds[2, 1]])

                    # if zone_idx == matches[obj_idx].argmax():
                    zone_pts += np.sum(np.float32(valid_pts))
                    total_pts += pts.shape[1]
            step_reward = max_reward * (zone_pts / total_pts)

        # Get cumulative rewards and return delta.
        reward = self.progress + step_reward - self._rewards
        self._rewards = self.progress + step_reward

        # Move to next goal step if current goal step is complete.
        if np.abs(max_reward - step_reward) < 0.01:
            self.progress += max_reward  # Update task progress.
            self.goals.pop(0)
            if len(self.lang_goals) > 0:
                self.lang_goals.pop(0)

        return reward, info

    def done(self):
        """Check if the task is done or has failed.

        Returns:
          True if the episode should be considered a success, which we
            use for measuring successes, which is particularly helpful for tasks
            where one may get successes on the very last time step, e.g., getting
            the cloth coverage threshold on the last alllowed action.
            However, for bag-items-easy and bag-items-hard (which use the
            'bag-items' metric), it may be necessary to filter out demos that did
            not attain sufficiently high reward in external code. Currently, this
            is done in `main.py` and its ignore_this_demo() method.
        """
        return (len(self.goals) == 0) or (self._rewards > 0.99)
        # return zone_done or defs_done or goal_done

    # -------------------------------------------------------------------------
    # Environment Helper Functions
    # -------------------------------------------------------------------------

    def is_match(self, pose0, pose1, symmetry):
        """Check if pose0 and pose1 match within a threshold."""

        # Get translational error.
        diff_pos = np.float32(pose0[0][:2]) - np.float32(pose1[0][:2])
        dist_pos = np.linalg.norm(diff_pos)

        # Get rotational error around z-axis (account for symmetries).
        diff_rot = 0
        if symmetry > 0:
            rot0 = np.array(utils.quatXYZW_to_eulerXYZ(pose0[1]))[2]
            rot1 = np.array(utils.quatXYZW_to_eulerXYZ(pose1[1]))[2]
            diff_rot = np.abs(rot0 - rot1) % symmetry
            if diff_rot > (symmetry / 2):
                diff_rot = symmetry - diff_rot

        return (dist_pos < self.pos_eps) and (diff_rot < self.rot_eps)

    def get_random_pose(self, env, obj_size):
        """Get random collision-free object pose within workspace bounds."""

        # Get erosion size of object in pixels.
        max_size = np.sqrt(obj_size[0] ** 2 + obj_size[1] ** 2)
        erode_size = int(np.round(max_size / self.pix_size))

        _, hmap, obj_mask = self.get_true_image(env)

        # Randomly sample an object pose within free-space pixels.
        free = np.ones(obj_mask.shape, dtype=np.uint8)
        for obj_ids in env.obj_ids.values():
            for obj_id in obj_ids:
                free[obj_mask == obj_id] = 0
        free[0, :], free[:, 0], free[-1, :], free[:, -1] = 0, 0, 0, 0
        free = cv2.erode(free, np.ones((erode_size, erode_size), np.uint8))

        # if np.sum(free) == 0:
        #     return None, None

        if np.sum(free) == 0:
            # avoid returning None, None
            # return None, None
            pix = (obj_mask.shape[0] // 2, obj_mask.shape[1] // 2)
        else:
            pix = utils.sample_distribution(np.float32(free))
        pos = utils.pix_to_xyz(pix, hmap, self.bounds, self.pix_size)
        pos = (pos[0], pos[1], obj_size[2] / 2)
        theta = np.random.rand() * 2 * np.pi
        rot = utils.eulerXYZ_to_quatXYZW((0, 0, theta))
        return pos, rot

    def get_lang_goal(self):
        if len(self.lang_goals) == 0:
            return self.task_completed_desc
        else:
            return self.lang_goals[0]

    def get_reward(self):
        return float(self._rewards)

    # -------------------------------------------------------------------------
    # Helper Functions
    # -------------------------------------------------------------------------

    def fill_template(self, template, replace):
        """Read a file and replace key strings."""
        full_template_path = os.path.join(self.assets_root, template)
        with open(full_template_path, 'r') as file:
            fdata = file.read()
        for field in replace:
            for i in range(len(replace[field])):
                fdata = fdata.replace(f'{field}{i}', str(replace[field][i]))
        alphabet = string.ascii_lowercase + string.digits
        rname = ''.join(random.choices(alphabet, k=16))
        tmpdir = tempfile.gettempdir()
        template_filename = os.path.split(template)[-1]
        fname = os.path.join(tmpdir, f'{template_filename}.{rname}')
        with open(fname, 'w') as file:
            file.write(fdata)
        return fname

    def get_random_size(self, min_x, max_x, min_y, max_y, min_z, max_z):
        """Get random box size."""
        size = np.random.rand(3)
        size[0] = size[0] * (max_x - min_x) + min_x
        size[1] = size[1] * (max_y - min_y) + min_y
        size[2] = size[2] * (max_z - min_z) + min_z
        return tuple(size)

    def color_random_brown(self, obj):
        shade = np.random.rand() + 0.5
        color = np.float32([shade * 156, shade * 117, shade * 95, 255]) / 255
        p.changeVisualShape(obj, -1, rgbaColor=color)

  """""
  
  # Environment Class
  def add_object(self, urdf, pose, category='rigid'):
    """List of (fixed, rigid, or deformable) objects in env."""
    fixed_base = 1 if category == 'fixed' else 0
    obj_id = pybullet_utils.load_urdf(
        p,
        os.path.join(self.assets_root, urdf),
        pose[0],
        pose[1],
        useFixedBase=fixed_base)
    self.obj_ids[category].append(obj_id)
    return obj_id
"""

=========
Note that the objects need to obey physics and not collide with each other, and the object goal poses need to be above the table with lower bound x=0.25, y=-0.5 and upper bound x=0.75, y=0.5. When there are multiple objects for a multi-step pick-and-place task, there are often multiple subgoals. Once the task and environment are generated, an agent with a pick and place primitive will follow the defined goal to accomplish the tasks. 

Additionally, make sure you understand and summarize the ``self.goals`` variables, which has a list of 8-tuple with (objs, matches, targ_poses, replace, rotations, metric, params, step_max_reward, symmetries).
- objs (List of obj_id): object ID.
- matches (Binary Matrix): a binary matrix that denotes which object is matched with which target. This matrix has dimension len(objs) x len(targs).
- targ_poses (List of Poses [(translation, rotation)] ): a list of target poses of tuple (translation, rotation). 
- replace (Boolean): whether each object can match with one unique target. This is important if we have one target and multiple objects. If it's set to be false, then any object matching with the target will satisfy.
- rotations (Boolean): whether the placement action has a rotation degree of freedom. 
- metric (`pose` or `zone`): `pose` or `zone` that the object needs to be transported to. Example: `pose`. 
- params (List of (zone_target, zone_size)): a list of (zone_target, zone_size) for each zone if the metric is `zone`. 
- step_max_reward (float): the total reward of matching all the objects with all the target poses. It is not dependent on the number of objects but dependent on the number of goals. 
- symmetries: the radians that the object is symmetric around z axis.
- language_goal: the low-level language instructions that denote the goal of this step.
 


>>> Answer: 
Yes, I understand the APIs and the structure of the task. 

The `Task` class is the base class for defining a task in the environment. It includes methods for resetting the task, defining the oracle agent, calculating rewards, checking task completion, and several helper functions for the environment.

The `oracle` method defines an oracle agent that can perfectly execute the task. It uses perfect RGB-D orthographic images and segmentation masks to identify the objects and their positions. The agent then calculates the pick and place poses to execute the task.

The `reward` method calculates the reward for the current timestep based on the task's progress. It checks if the current goal step is complete and if so, it updates the task progress and moves to the next goal step.

The `done` method checks if the task is done or has failed. It returns True if all the goals have been achieved or if the cumulative rewards exceed 0.99.

The `is_match` method checks if two poses match within a threshold. It calculates the translational error and rotational error around the z-axis and returns True if both errors are within the defined thresholds.

The `get_random_pose` method returns a random collision-free object pose within the workspace bounds. It uses the true image of the environment to identify free spaces and samples a random pose within these spaces.

The `get_lang_goal` method returns the language goal for the current step. If there are no more language goals, it returns a task completed description.

The `get_reward` method returns the cumulative rewards for the task.

The `fill_template` and `get_random_size` methods are helper functions for generating the task environment.

The `add_object` method in the Environment class is used to add an object to the environment. It takes the object's URDF file, its pose, and its category (fixed, rigid, or deformable) as inputs.

The `self.goals` variable is a list of tuples that define the goals for the task. Each tuple includes the objects involved, their target poses, whether each object can match with one unique target, whether the placement action has a rotation degree of freedom, the metric for the task (pose or zone), parameters for the task, the maximum reward for the step, and the symmetry of the objects.

================= Error Book Preview!

>>> Prompt: 
Before writing the code for the task "container-pyramid-construction". Here are some runtime errors that you do not want to make. Please confirm that you understand these runtime errors.

"""
- environment.py, line 338, in info
    pos, rot = p.getBasePositionAndOrientation(obj_id)
TypeError: an integer is required (got type NoneType)

- task.py, line 118, in act
    objs, matches, targs, replace, rotations, _, _, _ = self.goals[0]
IndexError: list index out of range

- task.py, line 308, in is_match
    diff_pos = np.float32(pose0[0][:2]) - np.float32(pose1[0][:2])
TypeError: 'float' object is not subscriptable

- task.py", line 315, in is_match
  rot1 = np.array(utils.quatXYZW_to_eulerXYZ(pose1[1]))[2]

- utils.py", line 280, in quatXYZW_to_eulerXYZ
  quaternion_wxyz = np.array([q[3], q[0], q[1], q[2]])
IndexError: tuple index out of range

- pallet_pose = self.get_random_pose(env, pallet_size)
pallet_surface_height = pallet_pose[0][2]
TypeError: 'NoneType' object is not subscriptable

- No such file or directory: './cliport/environments/assets/circle/circle-template.urdf'

- No such file or directory: './cliport/environments/assets/block/block-template.urdf'

- task.py", line 308, in is_match
    diff_pos = np.float32(pose0[0][:2]) - np.float32(pose1[0][:2])
IndexError: invalid index to scalar variable.

-TypeError: get_random_size() missing 4 required positional arguments: 'min_y', 'max_y', 'min_z', and 'max_z' 

- task.py", line 195, in reward
    obj_pts, zones = params
TypeError: cannot unpack non-iterable NoneType object

-  environment.py", line 230, in step
    reward, info = self.task.reward() if action is not None else (0, {})
  File "task.py", line 200, in reward
    pts = obj_pts[obj_id]
IndexError: arrays used as indices must be of integer (or boolean) type

- generated_task.py", line 41, in reset
    utils.COLORS['green'], utils.COLORS['blue'], utils.COLORS['light blue'],
KeyError: 'light blue'

- environment.py", line 195, in reset
    self.task.reset(self)
  File "<string>", line 38, in reset
TypeError: can only concatenate str (not "list") to str

- environment.py", line 195, in reset
  object_shape = np.random.choice(object_shapes)
  in numpy.random.mtrand.RandomState.choice
ValueError: a must be 1-dimensional

- No such file or directory: 'assets/box-template/box-template.urdf'

- line 38, in reset.py
{'HALF': box_size / 2}
TypeError: unsupported operand type(s) for /: 'tuple' and 'int'. box_size is a tuple not a float.

- line 38, in reset.py
IndexError: tuple index out of range
box_pose = (pallet_pose[0], pallet_pose[1], pallet_pose[2] + np.sum(box_sizes[:i+1]))

- task.py", line 338, in fill_template
    for i in range(len(replace[field])):
TypeError: object of type 'float' has no len().

- task.py", line 325, in get_random_pose
    pos = (pos[0], pos[1], obj_size[2] / 2)
IndexError: tuple index out of range

- task.py", line 206, in reward
    for zone_idx, (zone_pose, zone_size) in enumerate(zones):
TypeError: 'NoneType' object is not iterable

- task.py",
ball_pose = self.get_random_pose(env, ball_size)
ball_pose[0][2] += 0.02
TypeError: 'tuple' object does not support item assignment
"""


You do not want to make mistakes such as
- using assets (urdfs) that do not exist
- use ambiguous language descriptions as goals. For instance, "place the colored blocks into the matching colored bowls" with one goal and sparse reward as the task instead of adding subgoal "place blue block into blue bowl" and give continuous reward. 
- `matches` in the goal has wrong dimensions. It should have the same dimensions as number of objects (N) multiplied by the number of goal poses (M). Usually it is N by M.
- have vector dimension problem such as `np.random.choice(box_size)` or `box_size / 2` where `box_size` is a tuple and not an int
- make too large an object for stacking or make the task objects invisible for picking. 
- accessing index out of bound `pallet_pose[2]` for `pallet_pose`.  `pallet_pose=get_random_pose` returns a tuple (translation, rotation). It does not have 3rd component. Similarly accessing `container_pose[2]` or `box_pose[2]` would cause errors as well. Since it's a tuple, try to modify it in-place will also trigger errors.
- forget to replace str using `fill_template()` for urdfs with template such as `cylinder-template.urdf`. `ball-template.urdf`, `line-template.urf`. 
- use `self.ee = Spatula()` as a function when doing pushing tasks, which is incorrect. It should be `self.ee = Spatula`.
- forget to compute target poses `targ_poses` for matching. Do not use object IDs for poses.
- change colors of complex objects such as `zone`. You can only change color of teomplate primitive such as `cylinder-template`.
- mistakenly use `random_pose` for target pose. Design target poses based on task objectives.
- add only one or fewer language goals which causes language-motion inconsistentcy. Note that the language goals usually are the same number as the pick and place goals.


>>> Answer: 
Yes, I understand these runtime errors and will avoid them when writing the code for the task "container-pyramid-construction". 

Here are some key points to remember:

- Always ensure that the object IDs are valid integers before using them in PyBullet functions like `p.getBasePositionAndOrientation(obj_id)`.
- Always check if the `self.goals` list is not empty before accessing its elements.
- Ensure that the pose variables are correctly formatted as tuples of translation and rotation before using them in mathematical operations.
- Always check if the URDF files exist in the specified path before loading them into the environment.
- Ensure that the `replace` dictionary in the `fill_template` function contains lists as values, not single float values.
- Always check if the variables are not None before using them in mathematical operations or as indices.
- Ensure that the color keys used in `utils.COLORS` dictionary are valid.
- Always ensure that the variables used in mathematical operations have correct dimensions and data types.
- Always check if the variables are iterable before using them in a loop.
- Always ensure that the variables are mutable before trying to modify them in-place.

In addition, when designing the task, it's important to:

- Use assets (URDFs) that exist.
- Use clear and specific language descriptions as goals.
- Ensure that the `matches` matrix in the goal has correct dimensions.
- Avoid creating too large objects for stacking or making the task objects invisible for picking.
- Compute target poses `targ_poses` based on task objectives, not object IDs.
- Add enough language goals to maintain consistency between language and motion.
- Avoid changing colors of complex objects.
- Avoid using `random_pose` for target pose. Design target poses based on task objectives.

================= Code Reference!

>>> Prompt: 
Now I will provide you some reference code that might help you can write the code for the task "{'task-name': 'container-pyramid-construction', 'task-description': 'On a tabletop, there are containers of different shapes (square, circle, and triangle) and three different colors (red, blue, and green). The task is to pick up each container and stack them on a pallet in the shape of a pyramid with three levels: the bottom level should contain three containers (one of each shape) of the same color, the middle level should contain two containers of the same shape but different color, and the top level should contain one container of a different color and shape. The challenge lies in the precise alignment of the containers, maintaining the balance of the structure, and correct color and shape arrangement.', 'assets-used': ['container/container-template.urdf', 'pallet/pallet.urdf']}". 


['align_box_corner.py', 'align_rope.py', 'assembling_kits.py', 'block_insertion.py', 'manipulating_rope.py', 'packing_boxes.py', 'packing_boxes_pairs.py', 'palletizing_boxes.py', 'place_red_in_green.py', 'put_block_in_bowl.py', 'separating_piles.py', 'stack_block_pyramid.py', 'sweeping_piles.py', 'towers_of_hanoi.py', 'build_wheel.py', 'rainbow_stack.py', 'connect_boxes_with_rope.py', 'build_car.py', 'manipulating_two_ropes.py', 'insert_sphere_into_container.py', 'build_bridge.py', 'stack_blocks_in_container.py', 'mix_piles.py', 'color_coordinated_block_tower.py', 'color_structured_block_tower.py', 'stack_color_coordinated_blocks.py', 'assemble_single_car.py', 'sort_and_stack_clr_blocks.py', 'create_pyramid_blocks_and_container.py', 'Four_corner_pyramid_challenge.py', 'colorful_block_tower_on_cylinder_base.py', 'corner_block_challenge.py', 'construct_corner_blocks.py', 'corner_sort_cylinders.py', 'sorting_blocks_into_pallets.py', 'sort_and_assemble_block_castle.py', 'vertical_insertion_blocks.py', 'color_coordinated_sphere_insertion.py', 'block_pyramid_with_limited_space.py', 'build_cylinder_structure.py', 'insert_blocks_lineup.py', 'color_specific_container_fill.py', 'multicolor_block_bridge.py', 'pyramid_blocks_assemble.py', 'place_ball_in_elevated_bowl.py', 'align_balls_in_colored_zones.py', 'color_coordinated_cylinder_tower.py', 'symmetric_block_bridge_construction.py', 'sphere_align_stand.py', 'construct_colorful_arch.py', 'color_sorted_container_stack.py', 'align_spheres_in_colored_zones.py', 'sort_insert_color_coordinated_blocks.py', 'color_ordered_insertion.py', 'color_coordinated_insertion.py', 'cylinder_stand_alignment.py', 'color_sorted_block_race.py', 'multi_level_block_construction.py', 'color_blocks_in_cylinder_maze.py', 'create_pyramid_with_color_coded_ells.py', 'move_piles_along_line.py', 'color_ordered_blocks_on_pallet.py', 'color_ordered_container_arrangement.py', 'multi_level_pyramid_construction.py', 'align_balls_in_colored_boxes.py', 'colored_balls_sorting_in_corner.py', 'color_coordinated_ball_insertion.py', 'color_sequenced_pyramid_packing.py', 'ball_sorting_with_blocks_barrier.py', 'color_coordinated_block_bridge.py', 'color_coordinated_cylinder_pyramid.py', 'sweep_and_sort_blocks.py', 'align_cylinders_in_zones.py', 'sphere_container_color_match.py', 'insert_ell_along_square_path.py', 'color_coordinated_box_ball_matching.py', 'cylinder_balancing_and_placement.py', 'color_coordinated_sphere_and_cylinder_assembly.py', 'sequential_block_insertion.py', 'sequential_insertion_and_stacking.py', 'color_coordinated_block_shifting.py', 'guided_block_path.py', 'mixed_color_block_barrier_insertion.py', 'ball_in_bowl_obstacle_course.py', 'ball_in_bowl_obstacle_course_new.py', 'color_coordinated_arch_construction.py', 'color_coordinated_zone_arrangement.py', 'color_coordinated_cylinder_stand_assembly.py', 'color_coordinated_ball_stacking.py', 'color_coded_blocks_on_corner.py', 'insertion_in_color_sequenced_zones.py', 'color_coordinated_zone_stacking.py', 'color_coordinated_cylinder_ball_match.py', 'multi_level_insertion_and_zone_matching.py', 'color_cued_ball_corner_sorting.py', 'cylinder_ring_stack.py', 'color_coordinated_sphere_on_pallet_pyramid.py', 'color_sequenced_sphere_placement.py', 'color_ordered_insertion_new.py', 'put_blocks_between_zones.py', 'put_blues_around_red.py', 'place_blue_on_line_ends.py', 'stack_three_layer_red_wall.py', 'block_on_cylinder_on_pallet.py', 'ball_on_box_on_container.py', 'align_rope_along_line.py', 'align_rope_cross_zone.py', 'put_kit_in_bowl.py', 'kit_in_bowl_in_zone.py', 'move_kit_from_zone_to_cylinder.py', 'move_bowl_from_pallet_to_corner.py']


Please pick 4 task python files that you would like to use as reference. Format them in a python list. 


>>> Answer: 
Sure, based on the task description, I would suggest the following four tasks as references:

1. 'stack_block_pyramid.py'
2. 'rainbow_stack.py'
3. 'color_coordinated_block_tower.py'
4. 'multi_level_pyramid_construction.py'

These tasks involve stacking objects in a specific order or pattern, which is similar to the "container-pyramid-construction" task. They can provide valuable insights into how to design the task, calculate rewards, and handle task completion. 

Here is the list in Python format:

```python
reference_tasks = ['stack_block_pyramid.py', 'rainbow_stack.py', 'color_coordinated_block_tower.py', 'multi_level_pyramid_construction.py']
```

>>> Prompt: 
Now I will provide you some reference code and you can write the code for the task "container-pyramid-construction".


"""
import os

import numpy as np
from cliport.tasks.task import Task
from cliport.utils import utils


class PackingShapes(Task):
    """pick up randomly sized shapes and place them tightly into a container."""

    def __init__(self):
        super().__init__()
        self.max_steps = 1
        self.homogeneous = False

        self.lang_template = "pack the {obj} in the brown box"
        self.task_completed_desc = "done packing shapes."
        self.additional_reset()


    def reset(self, env):
        super().reset(env)

        # Shape Names:
        shapes = utils.assembling_kit_shapes

        n_objects = 5
        if self.mode == 'train':
            obj_shapes = np.random.choice(self.train_set, n_objects, replace=False)
        else:
            if self.homogeneous:
                obj_shapes = [np.random.choice(self.test_set, replace=False)] * n_objects
            else:
                obj_shapes = np.random.choice(self.test_set, n_objects, replace=False)

        # Shuffle colors to avoid always picking an object of the same color
        colors, color_names = utils.get_colors(mode=self.mode)

        # Add container box.
        zone_size = self.get_random_size(0.1, 0.15, 0.1, 0.15, 0.05, 0.05)
        zone_pose = self.get_random_pose(env, zone_size)
        container_template = 'container/container-template.urdf'
        replace = {'DIM': zone_size, 'HALF': (zone_size[0] / 2, zone_size[1] / 2, zone_size[2] / 2)}
        # IMPORTANT: REPLACE THE TEMPLATE URDF with `fill_template`
        container_urdf = self.fill_template(container_template, replace)
        env.add_object(container_urdf, zone_pose, 'fixed')

        # Add objects.
        objects = []
        template = 'kitting/object-template.urdf'
        for i in range(n_objects):
            shape = obj_shapes[i]

            # x, y, z dimensions for the asset size
            size = (0.08, 0.08, 0.02)
            pose= self.get_random_pose(env, size)
            fname = f'{shape:02d}.obj'
            fname = os.path.join(self.assets_root, 'kitting', fname)
            scale = [0.003, 0.003, 0.001]  # .0005
            replace = {'FNAME': (fname,),
                       'SCALE': scale,
                       'COLOR': colors[i]}

            # IMPORTANT: REPLACE THE TEMPLATE URDF
            urdf = self.fill_template(template, replace)
            block_id = env.add_object(urdf, pose)
            objects.append(block_id)

        # Pick the first shape.
        num_objects_to_pick = 1
        for i in range(num_objects_to_pick):
            # IMPORTANT: Specify (obj_pts, [(zone_pose, zone_size)]) for target `zone`. obj_pts is a dict
            language_goal = self.lang_template.format(obj=shapes[obj_shapes[i]])
            self.add_goal(objs=[objects[i]], matches=np.int32([[1]]), targ_poses=[zone_pose], replace=False,
                rotations=True, metric='zone', params=[(zone_pose, zone_size)], step_max_reward=1 / num_objects_to_pick,
                language_goal=language_goal)
"""
"""
import numpy as np
from cliport.tasks.task import Task
from cliport.utils import utils
import pybullet as p


class PlaceRedInGreen(Task):
    """pick up the red blocks and place them into the green bowls amidst other objects."""

    def __init__(self):
        super().__init__()
        self.max_steps = 10
        self.lang_template = "put the red blocks in a green bowl"
        self.task_completed_desc = "done placing blocks in bowls."
        self.additional_reset()

    def reset(self, env):
        super().reset(env)
        n_bowls = np.random.randint(1, 4)
        n_blocks = np.random.randint(1, n_bowls + 1)

        # Add bowls.
        # x, y, z dimensions for the asset size
        bowl_size = (0.12, 0.12, 0)
        bowl_urdf = 'bowl/bowl.urdf'
        bowl_poses = []
        for _ in range(n_bowls):
            bowl_pose = self.get_random_pose(env, obj_size=bowl_size)
            env.add_object(urdf=bowl_urdf, pose=bowl_pose, category='fixed')
            bowl_poses.append(bowl_pose)

        # Add blocks.
        # x, y, z dimensions for the asset size
        blocks = []
        block_size = (0.04, 0.04, 0.04)
        block_urdf = 'stacking/block.urdf'
        for _ in range(n_blocks):
            block_pose = self.get_random_pose(env, obj_size=block_size)
            block_id = env.add_object(block_urdf, block_pose)
            blocks.append(block_id)

        # Goal: each red block is in a different green bowl.
        self.add_goal(objs=blocks, matches=np.ones((len(blocks), len(bowl_poses))), targ_poses=bowl_poses, replace=False,
                rotations=True, metric='pose', params=None, step_max_reward=1, language_goal=self.lang_template)

        # Colors of distractor objects.
        bowl_colors = [utils.COLORS[c] for c in utils.COLORS if c != 'green']
        block_colors = [utils.COLORS[c] for c in utils.COLORS if c != 'red']

        # Add distractors.
        n_distractors = 0
        while n_distractors < 6:
            is_block = np.random.rand() > 0.5
            urdf = block_urdf if is_block else bowl_urdf
            size = block_size if is_block else bowl_size
            colors = block_colors if is_block else bowl_colors
            pose = self.get_random_pose(env, obj_size=size)
            color = colors[n_distractors % len(colors)]

            obj_id = env.add_object(urdf, pose, color=color)
            n_distractors += 1
"""
"""
import numpy as np
from cliport.tasks import primitives
from cliport.tasks.grippers import Spatula
from cliport.tasks.task import Task
from cliport.utils import utils


class SweepingPiles(Task):
    """Push piles of small objects into a target goal zone marked on the tabletop."""

    def __init__(self):
        super().__init__()
        self.max_steps = 20
        self.lang_template = "push the pile of blocks into the green square"
        self.task_completed_desc = "done sweeping."
        self.primitive = primitives.push
        self.ee = Spatula
        self.additional_reset()

    def reset(self, env):
        super().reset(env)

        # Add goal zone.
        zone_size = (0.12, 0.12, 0)
        zone_pose = self.get_random_pose(env, zone_size)
        env.add_object('zone/zone.urdf', zone_pose, 'fixed')

        # Add pile of small blocks with `make_piles` function
        obj_ids = self.make_piles(env)

        # Add goal
        self.add_goal(objs=obj_ids, matches=np.ones((50, 1)), targ_poses=[zone_pose], replace=True,
                rotations=False, metric='zone', params=[(zone_pose, zone_size)], step_max_reward=1, language_goal=self.lang_template)
"""
"""
import numpy as np
from cliport.tasks.task import Task
from cliport.utils import utils
import pybullet as p

class StackBlockPyramid(Task):
    """Build a pyramid of colored blocks in a color sequence"""

    def __init__(self):
        super().__init__()
        self.max_steps = 12
        self.lang_template = "make the {row} row with {blocks}"
        self.task_completed_desc = "done stacking block pyramid."
        self.additional_reset()

    def reset(self, env):
        super().reset(env)

        # Add base.
        base_size = (0.05, 0.15, 0.005)
        base_urdf = 'stacking/stand.urdf'
        base_pose = self.get_random_pose(env, base_size)
        env.add_object(base_urdf, base_pose, category='fixed')

        # Block colors.
        colors = [
            utils.COLORS['purple'], utils.COLORS['blue'], utils.COLORS['green'],
            utils.COLORS['yellow'], utils.COLORS['orange'], utils.COLORS['red']
        ]

        # Add blocks.
        block_size = (0.04, 0.04, 0.04)
        block_urdf = 'stacking/block.urdf'

        objs = []
        for i in range(6):
            block_pose = self.get_random_pose(env, block_size)
            block_id = env.add_object(block_urdf, block_pose, color=colors[i])
            objs.append(block_id)

        # IMPORTANT Associate placement locations for goals.
        place_pos = [(0, -0.05, 0.03), (0, 0, 0.03),
                     (0, 0.05, 0.03), (0, -0.025, 0.08),
                     (0, 0.025, 0.08), (0, 0, 0.13)]
        targs = [(utils.apply(base_pose, i), base_pose[1]) for i in place_pos]

        # Goal: blocks are stacked in a pyramid (bottom row: green, blue, purple).
        language_goal = self.lang_template.format(blocks="the green, blue and purple blocks", row="bottom")
        self.add_goal(objs=objs[:3], matches=np.ones((3, 3)), targ_poses=targs[:3], replace=False,
                rotations=True, metric='pose', params=None, step_max_reward=1 / 2, symmetries=[np.pi/2]*3, language_goal=language_goal)

        # Goal: blocks are stacked in a pyramid (middle row: yellow, orange).
        language_goal = self.lang_template.format(blocks="the yellow and orange blocks", row="middle")      
        self.add_goal(objs=objs[3:5], matches=np.ones((2, 2)), targ_poses=targs[3:5], replace=False,
                rotations=True, metric='pose', params=None, step_max_reward=1 / 3, symmetries=[np.pi/2]*2, language_goal=language_goal)

        # Goal: blocks are stacked in a pyramid (top row: red).
        language_goal = self.lang_template.format(blocks="the red block", row="top")
        self.add_goal(objs=objs[5:], matches=np.ones((1, 1)), targ_poses=targs[5:], replace=False,
                rotations=True, metric='pose', params=None, step_max_reward=1 / 6, symmetries=[np.pi/2]*1, language_goal=language_goal)
"""



Do not use libraries, functions, and assets that you don't know. For each object, try to describe its color, size, category in the task first before you write the code. You do not need extra helper functions. Comment the code liberally to explain what each piece does and why it's written that way. Use functions `make_piles` and `make_ropes` for creating piles and cables.  Note that the number of language goals usually match the number of motion goals, since they should correspond to each other.

Now write the code for the task "container-pyramid-construction" in python code block starting with ```python.  Reminder: TASK_STRING_TEMPLATE 


>>> Answer: 
Sure, here is the code for the task "container-pyramid-construction". 

```python
import numpy as np
from cliport.tasks.task import Task
from cliport.utils import utils

class ContainerPyramidConstruction(Task):
    """Construct a pyramid of containers with specific color and shape arrangement."""

    def __init__(self):
        super().__init__()
        self.max_steps = 10
        self.lang_template = "stack the {color} {shape} container on the {level} level"
        self.task_completed_desc = "done constructing container pyramid."
        self.additional_reset()

    def reset(self, env):
        super().reset(env)

        # Add pallet.
        pallet_size = (0.35, 0.35, 0.01)
        pallet_pose = self.get_random_pose(env, pallet_size)
        pallet_urdf = 'pallet/pallet.urdf'
        env.add_object(pallet_urdf, pallet_pose, 'fixed')

        # Define container shapes and colors.
        shapes = ['square', 'circle', 'triangle']
        colors = ['red', 'blue', 'green']
        levels = ['bottom', 'middle', 'top']

        # Add containers.
        container_urdf = 'container/container-template.urdf'
        containers = []
        for i in range(3):
            for j in range(3 - i):
                # Define container size and color.
                container_size = (0.1, 0.1, 0.1)
                container_color = colors[i]

                # Define container pose.
                x_offset = 0.05 * (j - (3 - i - 1) / 2)
                z_offset = 0.1 * i
                container_pose = (pallet_pose[0] + x_offset, pallet_pose[1], pallet_pose[2] + z_offset)

                # Add container to the environment.
                replace = {'DIM': container_size, 'HALF': (container_size[0] / 2, container_size[1] / 2, container_size[2] / 2)}
                container_urdf_filled = self.fill_template(container_urdf, replace)
                container_id = env.add_object(container_urdf_filled, container_pose, color=container_color)
                containers.append(container_id)

        # Add goals.
        for i in range(3):
            for j in range(3 - i):
                idx = int(i * (i + 1) / 2 + j)
                language_goal = self.lang_template.format(color=colors[i], shape=shapes[j], level=levels[i])
                self.add_goal(objs=[containers[idx]], matches=np.ones((1, 1)), targ_poses=[pallet_pose], replace=False,
                              rotations=True, metric='pose', params=None, step_max_reward=1 / 6, language_goal=language_goal)
```

This code first adds a pallet to the environment. Then it adds containers of different shapes and colors on the pallet in a pyramid arrangement. The containers are added level by level from bottom to top, and from left to right on each level. The color of the containers changes from level to level. The task goals are added accordingly, with each goal corresponding to placing a container on a specific level of the pyramid. The language goal describes the color, shape, and level of the container to be placed.

================= TRIAL: 1