import os import numpy as np import gradio as gr from transformers import pipeline transcriber = pipeline(task="automatic-speech-recognition", model="geokanaan/Whisper_Base_Lebanese_Arabizi") HF_TOKEN = os.getenv('WRITE') hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "flagged_Audio_Lebanese") def transcribe(audio): sr, y = audio # Convert to mono if stereo if y.ndim > 1: y = y.mean(axis=1) y = y.astype(np.float32) y /= np.max(np.abs(y)) return transcriber({"sampling_rate": sr, "raw": y})["text"] demo = gr.Interface( transcribe, gr.Audio(sources=["microphone"]), "text", title="Arabeasy", description="Realtime demo for Lebanese Arabizi speech recognition", allow_flagging='manual', # Enable manual flagging ) demo.launch()