File size: 21,778 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
conditions:
  - name: bm25-doc-tuned
    display: BM25 doc (k1=4.46, b=0.82)
    display-html: BM25 doc (<i>k<sub><small>1</small></sub></i>=4.46, <i>b</i>=0.82)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-slim --topics $topics --output $output --bm25
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2767
            R@1K: 0.9357
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2336
            nDCG@10: 0.5233
            R@1K: 0.6757
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.3581
            nDCG@10: 0.5061
            R@1K: 0.7776
  - name: bm25-doc-default
    display: BM25 doc (k1=0.9, b=0.4)
    display-html: BM25 doc (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (1a)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-slim --topics $topics --output $output --bm25 --k1 0.9 --b 0.4
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2299
            R@1K: 0.8856
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2434
            nDCG@10: 0.5176
            R@1K: 0.6966
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.3793
            nDCG@10: 0.5286
            R@1K: 0.8085
  - name: bm25-doc-segmented-tuned
    display: BM25 doc segmented (k1=2.16, b=0.61)
    display-html: BM25 doc segmented (<i>k<sub><small>1</small></sub></i>=2.16, <i>b</i>=0.61)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-slim --topics $topics --output $output --bm25 --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2756
            R@1K: 0.9311
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2398
            nDCG@10: 0.5389
            R@1K: 0.6565
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.3458
            nDCG@10: 0.5213
            R@1K: 0.7725
  - name: bm25-doc-segmented-default
    display: BM25 doc segmented (k1=0.9, b=0.4)
    display-html: BM25 doc segmented (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (1b)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-slim --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2684
            R@1K: 0.9178
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2449
            nDCG@10: 0.5302
            R@1K: 0.6871
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.3586
            nDCG@10: 0.5281
            R@1K: 0.7755
  - name: bm25-rm3-doc-tuned
    display: BM25+RM3 doc (k1=4.46, b=0.82)
    display-html: BM25+RM3 doc (<i>k<sub><small>1</small></sub></i>=4.46, <i>b</i>=0.82)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-full --topics $topics --output $output --bm25 --rm3
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2227
            R@1K: 0.9303
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2638
            nDCG@10: 0.5526
            R@1K: 0.7188
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.3610
            nDCG@10: 0.5195
            R@1K: 0.8180
  - name: bm25-rm3-doc-default
    display: BM25+RM3 doc (k1=0.9, b=0.4)
    display-html: BM25+RM3 doc (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (1c)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-full --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.1618
            R@1K: 0.8783
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2773
            nDCG@10: 0.5174
            R@1K: 0.7507
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.4015
            nDCG@10: 0.5254
            R@1K: 0.8259
  - name: bm25-rm3-doc-segmented-tuned
    display: BM25+RM3 doc segmented (k1=2.16, b=0.61)
    display-html: BM25+RM3 doc segmented (<i>k<sub><small>1</small></sub></i>=2.16, <i>b</i>=0.61)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-full --topics $topics --output $output --bm25 --rm3 --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2448
            R@1K: 0.9359
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2655
            nDCG@10: 0.5392
            R@1K: 0.7037
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.3471
            nDCG@10: 0.5030
            R@1K: 0.8056
  - name: bm25-rm3-doc-segmented-default
    display: BM25+RM3 doc segmented (k1=0.9, b=0.4)
    display-html: BM25+RM3 doc segmented (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (1d)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-full --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2413
            R@1K: 0.9351
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2892
            nDCG@10: 0.5684
            R@1K: 0.7368
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.3792
            nDCG@10: 0.5202
            R@1K: 0.8023
  - name: bm25-rocchio-doc-tuned
    display: BM25+Rocchio doc (k1=4.46, b=0.82)
    display-html: BM25+Rocchio doc (<i>k<sub><small>1</small></sub></i>=4.46, <i>b</i>=0.82)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-full --topics $topics --output $output --bm25 --rocchio
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2242
            R@1K: 0.9314
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2657
            nDCG@10: 0.5584
            R@1K: 0.7299
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.3628
            nDCG@10: 0.5199
            R@1K: 0.8217
  - name: bm25-rocchio-doc-default
    display: BM25+Rocchio doc (k1=0.9, b=0.4)
    display-html: BM25+Rocchio doc (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-full --topics $topics --output $output --bm25 --rocchio --k1 0.9 --b 0.4
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.1624
            R@1K: 0.8789
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2811
            nDCG@10: 0.5256
            R@1K: 0.7546
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.4089
            nDCG@10: 0.5192
            R@1K: 0.8273
  - name: bm25-rocchio-doc-segmented-tuned
    display: BM25+Rocchio doc segmented (k1=2.16, b=0.61)
    display-html: BM25+Rocchio doc segmented (<i>k<sub><small>1</small></sub></i>=2.16, <i>b</i>=0.61)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-full --topics $topics --output $output --bm25 --rocchio --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2475
            R@1K: 0.9395
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2672
            nDCG@10: 0.5421
            R@1K: 0.7115
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.3521
            nDCG@10: 0.4997
            R@1K: 0.8042
  - name: bm25-rocchio-doc-segmented-default
    display: BM25+Rocchio doc segmented (k1=0.9, b=0.4)
    display-html: BM25+Rocchio doc segmented (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-full --topics $topics --output $output --bm25 --rocchio --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2447
            R@1K: 0.9351
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2889
            nDCG@10: 0.5570
            R@1K: 0.7423
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.3830
            nDCG@10: 0.5226
            R@1K: 0.8102
  - name: bm25-d2q-t5-doc-tuned
    display: BM25 w/ doc2query-T5 doc (k1=4.68, b=0.87)
    display-html: BM25 w/ doc2query-T5 doc (<i>k<sub><small>1</small></sub></i>=4.68, <i>b</i>=0.87)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-d2q-t5 --topics $topics --output $output --bm25
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.3269
            R@1K: 0.9553
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2620
            nDCG@10: 0.5972
            R@1K: 0.6867
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.4099
            nDCG@10: 0.5852
            R@1K: 0.8105
  - name: bm25-d2q-t5-doc-default
    display: BM25 w/ doc2query-T5 doc (k1=0.9, b=0.4)
    display-html: BM25 w/ doc2query-T5 doc (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (2a)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-d2q-t5 --topics $topics --output $output --bm25 --k1 0.9 --b 0.4
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2880
            R@1K: 0.9259
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2700
            nDCG@10: 0.5968
            R@1K: 0.7190
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.4230
            nDCG@10: 0.5885
            R@1K: 0.8403
  - name: bm25-d2q-t5-doc-segmented-tuned
    display: BM25 w/ doc2query-T5 doc segmented (k1=2.56, b=0.59)
    display-html: BM25 w/ doc2query-T5 doc segmented (<i>k<sub><small>1</small></sub></i>=2.56, <i>b</i>=0.59)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-d2q-t5 --topics $topics --output $output --bm25 --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.3209
            R@1K: 0.9530
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2658
            nDCG@10: 0.6273
            R@1K: 0.6707
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.4047
            nDCG@10: 0.5943
            R@1K: 0.7968
  - name: bm25-d2q-t5-doc-segmented-default
    display: BM25 w/ doc2query-T5 doc segmented (k1=0.9, b=0.4)
    display-html: BM25 w/ doc2query-T5 doc segmented (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (2b)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-d2q-t5 --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.3179
            R@1K: 0.9490
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2798
            nDCG@10: 0.6119
            R@1K: 0.7165
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.4150
            nDCG@10: 0.5957
            R@1K: 0.8046
  - name: bm25-rm3-d2q-t5-doc-tuned
    display: BM25+RM3 w/ doc2query-T5 doc (k1=4.68, b=0.87)
    display-html: BM25+RM3 w/ doc2query-T5 doc (<i>k<sub><small>1</small></sub></i>=4.68, <i>b</i>=0.87)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2623
            R@1K: 0.9522
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2813
            nDCG@10: 0.6091
            R@1K: 0.7184
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.4100
            nDCG@10: 0.5745
            R@1K: 0.8238
  - name: bm25-rm3-d2q-t5-doc-default
    display: BM25+RM3 w/ doc2query-T5 doc (k1=0.9, b=0.4)
    display-html: BM25+RM3 w/ doc2query-T5 doc (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (2c)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.1834
            R@1K: 0.9126
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.3045
            nDCG@10: 0.5904
            R@1K: 0.7737
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.4230
            nDCG@10: 0.5427
            R@1K: 0.8631
  - name: bm25-rm3-d2q-t5-doc-segmented-tuned
    display: BM25+RM3 w/ doc2query-T5 doc segmented (k1=2.56, b=0.59)
    display-html: BM25+RM3 w/ doc2query-T5 doc segmented (<i>k<sub><small>1</small></sub></i>=2.56, <i>b</i>=0.59)
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2973
            R@1K: 0.9563
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2892
            nDCG@10: 0.6247
            R@1K: 0.7069
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.4016
            nDCG@10: 0.5711
            R@1K: 0.8156
  - name: bm25-rm3-d2q-t5-doc-segmented-default
    display: BM25+RM3 w/ doc2query-T5 doc segmented (k1=0.9, b=0.4)
    display-html: BM25+RM3 w/ doc2query-T5 doc segmented (<i>k<sub><small>1</small></sub></i>=0.9, <i>b</i>=0.4)
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (2d)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.2803
            R@1K: 0.9551
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.3030
            nDCG@10: 0.6290
            R@1K: 0.7483
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.4271
            nDCG@10: 0.5851
            R@1K: 0.8266
  - name: unicoil-noexp-otf
    display: "uniCOIL (noexp): otf"
    display-html: "uniCOIL (noexp): on-the-fly query inference"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-unicoil-noexp --topics $topics --encoder castorini/unicoil-noexp-msmarco-passage --output $output --impact --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.3410
            R@1K: 0.9420
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2661
            nDCG@10: 0.6347
            R@1K: 0.6385
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.3698
            nDCG@10: 0.5906
            R@1K: 0.7621
  - name: unicoil-noexp
    display: "uniCOIL (noexp): pre-encoded"
    display-html: "uniCOIL (noexp): pre-encoded queries"
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (3a)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-unicoil-noexp --topics $topics --output $output --impact --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev-unicoil-noexp
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.3409
            R@1K: 0.9420
      - topic_key: dl19-doc-unicoil-noexp
        eval_key: dl19-doc
        scores:
          - MAP: 0.2665
            nDCG@10: 0.6349
            R@1K: 0.6391
      - topic_key: dl20-unicoil-noexp
        eval_key: dl20-doc
        scores:
          - MAP: 0.3698
            nDCG@10: 0.5893
            R@1K: 0.7623
  - name: unicoil-otf
    display: "uniCOIL (w/ doc2query-T5): otf"
    display-html: "uniCOIL (w/ doc2query-T5): on-the-fly query inference"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-unicoil --topics $topics --encoder castorini/unicoil-msmarco-passage --output $output --impact --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.3532
            R@1K: 0.9546
      - topic_key: dl19-doc
        eval_key: dl19-doc
        scores:
          - MAP: 0.2789
            nDCG@10: 0.6396
            R@1K: 0.6654
      - topic_key: dl20
        eval_key: dl20-doc
        scores:
          - MAP: 0.3881
            nDCG@10: 0.6030
            R@1K: 0.7866
  - name: unicoil
    display: "uniCOIL (w/ doc2query-T5): pre-encoded"
    display-html: "uniCOIL (w/ doc2query-T5): pre-encoded queries"
    display-row: "[<a href=\"#\" data-mdb-toggle=\"tooltip\" title=\"Ma et al. (SIGIR 2021) Document Expansions and Learned Sparse Lexical Representations for MS MARCO V1 and V2.\">1</a>] &mdash; (3b)"
    command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-unicoil --topics $topics --output $output --impact --hits 10000 --max-passage-hits 1000 --max-passage
    topics:
      - topic_key: msmarco-doc-dev-unicoil
        eval_key: msmarco-doc-dev
        scores:
          - MRR@10: 0.3531
            R@1K: 0.9546
      - topic_key: dl19-doc-unicoil
        eval_key: dl19-doc
        scores:
          - MAP: 0.2789
            nDCG@10: 0.6396
            R@1K: 0.6652
      - topic_key: dl20-unicoil
        eval_key: dl20-doc
        scores:
          - MAP: 0.3882
            nDCG@10: 0.6033
            R@1K: 0.7869