File size: 6,539 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import argparse
import sys

from pyserini.encode import JsonlRepresentationWriter, FaissRepresentationWriter, JsonlCollectionIterator
from pyserini.encode import DprDocumentEncoder, TctColBertDocumentEncoder, AnceDocumentEncoder, AutoDocumentEncoder
from pyserini.encode import UniCoilDocumentEncoder


encoder_class_map = {
    "dpr": DprDocumentEncoder,
    "tct_colbert": TctColBertDocumentEncoder,
    "ance": AnceDocumentEncoder,
    "sentence-transformers": AutoDocumentEncoder,
    "unicoil": UniCoilDocumentEncoder,
    "auto": AutoDocumentEncoder,
}

def init_encoder(encoder, encoder_class, device):
    _encoder_class = encoder_class

    # determine encoder_class
    if encoder_class is not None:
        encoder_class = encoder_class_map[encoder_class]
    else:
        # if any class keyword was matched in the given encoder name,
        # use that encoder class
        for class_keyword in encoder_class_map:
            if class_keyword in encoder.lower():
                encoder_class = encoder_class_map[class_keyword]
                break

        # if none of the class keyword was matched,
        # use the AutoDocumentEncoder
        if encoder_class is None:
            encoder_class = AutoDocumentEncoder

    # prepare arguments to encoder class
    kwargs = dict(model_name=encoder, device=device)
    if (_encoder_class == "sentence-transformers") or ("sentence-transformers" in encoder):
        kwargs.update(dict(pooling='mean', l2_norm=True))
    if (_encoder_class == "contriever") or ("contriever" in encoder):
        kwargs.update(dict(pooling='mean', l2_norm=False))

    return encoder_class(**kwargs)


def parse_args(parser, commands):
    # Divide argv by commands
    split_argv = [[]]
    for c in sys.argv[1:]:
        if c in commands.choices:
            split_argv.append([c])
        else:
            split_argv[-1].append(c)
    # Initialize namespace
    args = argparse.Namespace()
    for c in commands.choices:
        setattr(args, c, None)
    # Parse each command
    parser.parse_args(split_argv[0], namespace=args)  # Without command
    for argv in split_argv[1:]:  # Commands
        n = argparse.Namespace()
        setattr(args, argv[0], n)
        parser.parse_args(argv, namespace=n)
    return args


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    commands = parser.add_subparsers(title='sub-commands')
    input_parser = commands.add_parser('input')
    input_parser.add_argument('--corpus', type=str,
                              help='directory that contains corpus files to be encoded, in jsonl format.',
                              required=True)
    input_parser.add_argument('--fields', help='fields that contents in jsonl has (in order)',
                              nargs='+', default=['text'], required=False)
    input_parser.add_argument('--delimiter', help='delimiter for the fields', default='\n', required=False)
    input_parser.add_argument('--shard-id', type=int, help='shard-id 0-based', default=0, required=False)
    input_parser.add_argument('--shard-num', type=int, help='number of shards', default=1, required=False)

    output_parser = commands.add_parser('output')
    output_parser.add_argument('--embeddings', type=str, help='directory to store encoded corpus', required=True)
    output_parser.add_argument('--to-faiss', action='store_true', default=False)

    encoder_parser = commands.add_parser('encoder')
    encoder_parser.add_argument('--encoder', type=str, help='encoder name or path', required=True)
    encoder_parser.add_argument('--encoder-class', type=str, required=False, default=None,
                                choices=["dpr", "bpr", "tct_colbert", "ance", "sentence-transformers", "auto"],
                                help='which query encoder class to use. `default` would infer from the args.encoder')
    encoder_parser.add_argument('--fields', help='fields to encode', nargs='+', default=['text'], required=False)
    encoder_parser.add_argument('--batch-size', type=int, help='batch size', default=64, required=False)
    encoder_parser.add_argument('--max-length', type=int, help='max length', default=256, required=False)
    encoder_parser.add_argument('--dimension', type=int, help='dimension', default=768, required=False)
    encoder_parser.add_argument('--device', type=str, help='device cpu or cuda [cuda:0, cuda:1...]',
                                default='cuda:0', required=False)
    encoder_parser.add_argument('--fp16', action='store_true', default=False)
    encoder_parser.add_argument('--add-sep', action='store_true', default=False)

    args = parse_args(parser, commands)
    delimiter = args.input.delimiter.replace("\\n", "\n")  # argparse would add \ prior to the passed '\n\n'

    encoder = init_encoder(args.encoder.encoder, args.encoder.encoder_class, device=args.encoder.device)
    if args.output.to_faiss:
        embedding_writer = FaissRepresentationWriter(args.output.embeddings, dimension=args.encoder.dimension)
    else:
        embedding_writer = JsonlRepresentationWriter(args.output.embeddings)
    collection_iterator = JsonlCollectionIterator(args.input.corpus, args.input.fields, delimiter)

    with embedding_writer:
        for batch_info in collection_iterator(args.encoder.batch_size, args.input.shard_id, args.input.shard_num):
            kwargs = {
                'texts': batch_info['text'],
                'titles': batch_info['title'] if 'title' in args.encoder.fields else None,
                'expands': batch_info['expand'] if 'expand' in args.encoder.fields else None,
                'fp16': args.encoder.fp16,
                'max_length': args.encoder.max_length,
                'add_sep': args.encoder.add_sep,
            }
            embeddings = encoder.encode(**kwargs)
            batch_info['vector'] = embeddings
            embedding_writer.write(batch_info, args.input.fields)