File size: 6,086 Bytes
d6585f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import argparse

from pyserini.search.faiss import AutoQueryEncoder, AnceQueryEncoder, DprQueryEncoder, TctColBertQueryEncoder

def _init_encoder_from_str(encoder, device='cpu'):
    encoder_lower = encoder.lower()
    if 'dpr' in encoder_lower:
        return DprQueryEncoder(encoder_dir=encoder, device=device)
    elif 'tct_colbert' in encoder_lower:
        return TctColBertQueryEncoder(encoder_dir=encoder, device=device)
    elif 'ance' in encoder_lower:
        return AnceQueryEncoder(encoder_dir=encoder, device=device)
    elif 'sentence' in encoder_lower:
        return AutoQueryEncoder(encoder_dir=encoder, pooling='mean', l2_norm=True, device=device)
    else:
        return AutoQueryEncoder(encoder_dir=encoder, device=device)


def load_index(searcher_class, index_path, query_encoder=None):
    if query_encoder is not None:
        searcher = searcher_class(index_path, query_encoder)
    else:
        searcher = searcher_class(index_path)

    return searcher

class OnlineSearcher(object):
    def __init__(self, args):
        self.args = args

        # TEMPORARY: deal with missing args
        if 'index_type' not in args:
            args.index_type = 'hybrid'
        if 'index' not in args:
            args.index = '/root/indexes/mrtydi-korean/sparse,/root/indexes/mrtydi-korean/dense'
        if 'lang_abbr' not in args:
            args.lang_abbr = 'ko'
        if 'encoder' not in args:
            args.encoder = 'castorini/mdpr-question-nq'
        if 'device' not in args:
            args.device = 'cuda:0'
        if 'alpha' not in args:
            args.alpha = 0.5
        if 'normalization' not in args:
            args.normalization = True
        if 'k' not in args:
            args.k = 10

        if args.index_type == 'sparse':
            query_encoder = None
        elif args.index_type == 'dense' or args.index_type == 'hybrid':
            query_encoder = _init_encoder_from_str(encoder=args.encoder, device=args.device)
        else:
            raise ValueError(f"index_type {args.index_type} should be chosen among sparse, dense, or hybrid")

        # load index
        if args.index_type == 'hybrid':
            args.index = args.index.split(',')
            assert(len(args.index) == 2), "require both sparse and dense index delimited by comma"

            from pyserini.search.lucene import LuceneSearcher
            self.ssearcher = load_index(searcher_class=LuceneSearcher, index_path=args.index[0])
            self.ssearcher.set_language(args.lang_abbr)

            from pyserini.search.faiss import FaissSearcher
            self.dsearcher = load_index(searcher_class=FaissSearcher, index_path=args.index[1], query_encoder=query_encoder)

            from pyserini.search.hybrid import HybridSearcher
            self.searcher = HybridSearcher(self.dsearcher, self.ssearcher)

            print(f"load {self.ssearcher.num_docs} documents from {args.index}")
        else:
            if args.index_type == 'sparse':
                from pyserini.search.lucene import LuceneSearcher as Searcher
            elif args.index_type == 'dense':
                from pyserini.search.faiss import FaissSearcher as Searcher
            self.searcher = load_index(searcher_class=Searcher, index_path=args.index, query_encoder=query_encoder)
            if args.index_type == 'sparse':
                self.searcher.set_language(args.lang_abbr)    
        
            print(f"load {self.searcher.num_docs} documents from {args.index}")

    def search(self, query, k=10):
        if self.args.index_type == 'hybrid':
            hits = self.searcher.search(query, alpha=self.args.alpha, normalization=self.args.normalization, k=k)
        else:
            hits = self.searcher.search(query)

        return hits

    def print_result(self, hits, k):
        # Print the first 10 hits:
        for i in range(0, k):                
            print(f'{i+1:2} {hits[i].docid:15} {hits[i].score:.5f}')
            if args.index_type == 'sparse': # faiss searcher does not store document raw text            
                doc = self.searcher.doc(hits[i].docid)
            elif args.index_type == 'hybrid':
                doc = self.searcher.sparse_searcher.doc(hits[i].docid)
            else:
                doc = None
            if doc is not None:
                print(doc.raw())


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Search interactively')
    parser.add_argument('--index_type', type=str, required=True,
                        help="choose indexing type", choices=['sparse', 'dense', 'hybrid'])
    parser.add_argument('--index', type=str, required=True,
                        help="Path to index or name of prebuilt index.")

    parser.add_argument('--query', type=str, required=True,
                        help="Query text")
    parser.add_argument('--lang_abbr', type=str, required=False, default='ko',
                        help="for language specific algorithms for sparse retrieveal)")

    parser.add_argument('--encoder', type=str, required=False,
                        help="encoder name or checkpoint path")
                        
    parser.add_argument('--device', type=str, required=False, default='cpu',
                        help="device to use for encoding queries (cf. pyserini does not support faiss-gpu)")

    # for hybrid search
    parser.add_argument('--alpha', type=float, default=0.5,
                        help="weight for hybrid search: alpha*score(sparse) + score(dense)")          
    parser.add_argument('--normalization', action='store_true',
                        help="normalize sparse & dens score before fusion")  

    # search range
    parser.add_argument('--k', type=int, default=10,
                    help="the number of passages to return (default: 10)")    

    args = parser.parse_args()    

    # make searcher
    searcher = OnlineSearcher(args)
    
    print(f"given query: {args.query}")

    # search
    hits = searcher.search(args.query)

    # print results
    searcher.print_result(hits, args.k)