Spaces:
Runtime error
Runtime error
# | |
# Pyserini: Reproducible IR research with sparse and dense representations | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import json | |
import argparse | |
import string | |
from nltk import bigrams, word_tokenize, SnowballStemmer | |
from nltk.corpus import stopwords | |
from tqdm import tqdm | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='Convert KILT Knowledge Source into a Document-level JSONL that can be processed by Pyserini') | |
parser.add_argument('--input', required=True, help='Path to the kilt_knowledgesource.json file') | |
parser.add_argument('--output', required=True, help='Path to the output directory and file name') | |
parser.add_argument('--bigrams', action='store_true', help='Enable bigrams') | |
parser.add_argument('--stem', action='store_true', help='Enable stemming on bigrams') | |
parser.add_argument('--flen', default=5903530, type=int, help='Number of lines in the file') | |
args = parser.parse_args() | |
FILE_LENGTH = args.flen | |
STOPWORDS = set(stopwords.words('english') + list(string.punctuation)) | |
stemmer = SnowballStemmer("english") | |
with open(args.input, 'r') as f, open(f'{args.output}', 'w') as outp: | |
for line in tqdm(f, total=FILE_LENGTH, mininterval=10.0, maxinterval=20.0): | |
raw = json.loads(line) | |
doc = {} | |
doc["id"] = raw["_id"] | |
doc["contents"] = "".join(raw["text"]) | |
if args.bigrams: | |
tokens = filter(lambda word: word.lower() not in STOPWORDS, word_tokenize(doc["contents"])) | |
if args.stem: | |
tokens = map(stemmer.stem, tokens) | |
bigram_doc = bigrams(tokens) | |
bigram_doc = " ".join(["".join(bigram) for bigram in bigram_doc]) | |
doc["contents"] += " " + bigram_doc | |
doc["wikipedia_id"] = raw["wikipedia_id"] | |
doc["wikipedia_title"] = raw["wikipedia_title"] | |
doc["categories"] = raw["categories"] | |
_ = outp.write(json.dumps(doc)) | |
_ = outp.write('\n') | |