Spaces:
Runtime error
Runtime error
# | |
# Pyserini: Reproducible IR research with sparse and dense representations | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import argparse | |
import json | |
import os | |
import faiss | |
import numpy as np | |
from tqdm import tqdm | |
from transformers import BertModel, BertTokenizer | |
def encode_passage(text, tokenizer, model, device='cuda:0'): | |
max_length = 154 # hardcode for now | |
inputs = tokenizer( | |
'[CLS] [D] ' + text, | |
max_length=max_length, | |
truncation=True, | |
add_special_tokens=False, | |
return_tensors='pt' | |
) | |
inputs.to(device) | |
outputs = model(**inputs) | |
embeddings = outputs.last_hidden_state.detach().cpu().numpy() | |
return np.mean(embeddings[:, 4:, :], axis=-2).flatten() | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--encoder', type=str, help='encoder name or path', required=True) | |
parser.add_argument('--dimension', type=int, help='dimension of passage embeddings', required=False, default=768) | |
parser.add_argument('--corpus', type=str, | |
help='directory that contains corpus files to be encoded, in jsonl format.', required=True) | |
parser.add_argument('--index', type=str, help='directory to store brute force index of corpus', required=True) | |
parser.add_argument('--device', type=str, help='device cpu or cuda [cuda:0, cuda:1...]', default='cuda:0') | |
args = parser.parse_args() | |
tokenizer = BertTokenizer.from_pretrained(args.encoder) | |
model = BertModel.from_pretrained(args.encoder) | |
model.to(args.device) | |
index = faiss.IndexFlatIP(args.dimension) | |
if not os.path.exists(args.index): | |
os.mkdir(args.index) | |
with open(os.path.join(args.index, 'docid'), 'w') as id_file: | |
for file in sorted(os.listdir(args.corpus)): | |
file = os.path.join(args.corpus, file) | |
if file.endswith('json'): | |
print(f'Encoding {file}') | |
with open(file, 'r') as corpus: | |
for idx, line in enumerate(tqdm(corpus.readlines())): | |
info = json.loads(line) | |
docid = info['id'] | |
text = info['contents'] | |
id_file.write(f'{docid}\n') | |
embedding = encode_passage(text, tokenizer, model, args.device) | |
index.add(np.array([embedding])) | |
faiss.write_index(index, os.path.join(args.index, 'index')) |