conditions: - name: bm25-doc-tuned display: BM25 doc (k1=4.46, b=0.82) display-html: BM25 doc (k1=4.46, b=0.82) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-slim --topics $topics --output $output --bm25 topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2767 R@1K: 0.9357 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2336 nDCG@10: 0.5233 R@1K: 0.6757 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.3581 nDCG@10: 0.5061 R@1K: 0.7776 - name: bm25-doc-default display: BM25 doc (k1=0.9, b=0.4) display-html: BM25 doc (k1=0.9, b=0.4) display-row: "[1] — (1a)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-slim --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2299 R@1K: 0.8856 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2434 nDCG@10: 0.5176 R@1K: 0.6966 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.3793 nDCG@10: 0.5286 R@1K: 0.8085 - name: bm25-doc-segmented-tuned display: BM25 doc segmented (k1=2.16, b=0.61) display-html: BM25 doc segmented (k1=2.16, b=0.61) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-slim --topics $topics --output $output --bm25 --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2756 R@1K: 0.9311 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2398 nDCG@10: 0.5389 R@1K: 0.6565 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.3458 nDCG@10: 0.5213 R@1K: 0.7725 - name: bm25-doc-segmented-default display: BM25 doc segmented (k1=0.9, b=0.4) display-html: BM25 doc segmented (k1=0.9, b=0.4) display-row: "[1] — (1b)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-slim --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2684 R@1K: 0.9178 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2449 nDCG@10: 0.5302 R@1K: 0.6871 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.3586 nDCG@10: 0.5281 R@1K: 0.7755 - name: bm25-rm3-doc-tuned display: BM25+RM3 doc (k1=4.46, b=0.82) display-html: BM25+RM3 doc (k1=4.46, b=0.82) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-full --topics $topics --output $output --bm25 --rm3 topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2227 R@1K: 0.9303 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2638 nDCG@10: 0.5526 R@1K: 0.7188 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.3610 nDCG@10: 0.5195 R@1K: 0.8180 - name: bm25-rm3-doc-default display: BM25+RM3 doc (k1=0.9, b=0.4) display-html: BM25+RM3 doc (k1=0.9, b=0.4) display-row: "[1] — (1c)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-full --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4 topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.1618 R@1K: 0.8783 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2773 nDCG@10: 0.5174 R@1K: 0.7507 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.4015 nDCG@10: 0.5254 R@1K: 0.8259 - name: bm25-rm3-doc-segmented-tuned display: BM25+RM3 doc segmented (k1=2.16, b=0.61) display-html: BM25+RM3 doc segmented (k1=2.16, b=0.61) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-full --topics $topics --output $output --bm25 --rm3 --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2448 R@1K: 0.9359 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2655 nDCG@10: 0.5392 R@1K: 0.7037 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.3471 nDCG@10: 0.5030 R@1K: 0.8056 - name: bm25-rm3-doc-segmented-default display: BM25+RM3 doc segmented (k1=0.9, b=0.4) display-html: BM25+RM3 doc segmented (k1=0.9, b=0.4) display-row: "[1] — (1d)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-full --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2413 R@1K: 0.9351 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2892 nDCG@10: 0.5684 R@1K: 0.7368 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.3792 nDCG@10: 0.5202 R@1K: 0.8023 - name: bm25-rocchio-doc-tuned display: BM25+Rocchio doc (k1=4.46, b=0.82) display-html: BM25+Rocchio doc (k1=4.46, b=0.82) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-full --topics $topics --output $output --bm25 --rocchio topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2242 R@1K: 0.9314 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2657 nDCG@10: 0.5584 R@1K: 0.7299 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.3628 nDCG@10: 0.5199 R@1K: 0.8217 - name: bm25-rocchio-doc-default display: BM25+Rocchio doc (k1=0.9, b=0.4) display-html: BM25+Rocchio doc (k1=0.9, b=0.4) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-full --topics $topics --output $output --bm25 --rocchio --k1 0.9 --b 0.4 topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.1624 R@1K: 0.8789 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2811 nDCG@10: 0.5256 R@1K: 0.7546 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.4089 nDCG@10: 0.5192 R@1K: 0.8273 - name: bm25-rocchio-doc-segmented-tuned display: BM25+Rocchio doc segmented (k1=2.16, b=0.61) display-html: BM25+Rocchio doc segmented (k1=2.16, b=0.61) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-full --topics $topics --output $output --bm25 --rocchio --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2475 R@1K: 0.9395 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2672 nDCG@10: 0.5421 R@1K: 0.7115 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.3521 nDCG@10: 0.4997 R@1K: 0.8042 - name: bm25-rocchio-doc-segmented-default display: BM25+Rocchio doc segmented (k1=0.9, b=0.4) display-html: BM25+Rocchio doc segmented (k1=0.9, b=0.4) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-full --topics $topics --output $output --bm25 --rocchio --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2447 R@1K: 0.9351 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2889 nDCG@10: 0.5570 R@1K: 0.7423 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.3830 nDCG@10: 0.5226 R@1K: 0.8102 - name: bm25-d2q-t5-doc-tuned display: BM25 w/ doc2query-T5 doc (k1=4.68, b=0.87) display-html: BM25 w/ doc2query-T5 doc (k1=4.68, b=0.87) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-d2q-t5 --topics $topics --output $output --bm25 topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.3269 R@1K: 0.9553 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2620 nDCG@10: 0.5972 R@1K: 0.6867 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.4099 nDCG@10: 0.5852 R@1K: 0.8105 - name: bm25-d2q-t5-doc-default display: BM25 w/ doc2query-T5 doc (k1=0.9, b=0.4) display-html: BM25 w/ doc2query-T5 doc (k1=0.9, b=0.4) display-row: "[1] — (2a)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-d2q-t5 --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2880 R@1K: 0.9259 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2700 nDCG@10: 0.5968 R@1K: 0.7190 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.4230 nDCG@10: 0.5885 R@1K: 0.8403 - name: bm25-d2q-t5-doc-segmented-tuned display: BM25 w/ doc2query-T5 doc segmented (k1=2.56, b=0.59) display-html: BM25 w/ doc2query-T5 doc segmented (k1=2.56, b=0.59) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-d2q-t5 --topics $topics --output $output --bm25 --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.3209 R@1K: 0.9530 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2658 nDCG@10: 0.6273 R@1K: 0.6707 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.4047 nDCG@10: 0.5943 R@1K: 0.7968 - name: bm25-d2q-t5-doc-segmented-default display: BM25 w/ doc2query-T5 doc segmented (k1=0.9, b=0.4) display-html: BM25 w/ doc2query-T5 doc segmented (k1=0.9, b=0.4) display-row: "[1] — (2b)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-d2q-t5 --topics $topics --output $output --bm25 --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.3179 R@1K: 0.9490 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2798 nDCG@10: 0.6119 R@1K: 0.7165 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.4150 nDCG@10: 0.5957 R@1K: 0.8046 - name: bm25-rm3-d2q-t5-doc-tuned display: BM25+RM3 w/ doc2query-T5 doc (k1=4.68, b=0.87) display-html: BM25+RM3 w/ doc2query-T5 doc (k1=4.68, b=0.87) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2623 R@1K: 0.9522 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2813 nDCG@10: 0.6091 R@1K: 0.7184 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.4100 nDCG@10: 0.5745 R@1K: 0.8238 - name: bm25-rm3-d2q-t5-doc-default display: BM25+RM3 w/ doc2query-T5 doc (k1=0.9, b=0.4) display-html: BM25+RM3 w/ doc2query-T5 doc (k1=0.9, b=0.4) display-row: "[1] — (2c)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4 topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.1834 R@1K: 0.9126 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.3045 nDCG@10: 0.5904 R@1K: 0.7737 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.4230 nDCG@10: 0.5427 R@1K: 0.8631 - name: bm25-rm3-d2q-t5-doc-segmented-tuned display: BM25+RM3 w/ doc2query-T5 doc segmented (k1=2.56, b=0.59) display-html: BM25+RM3 w/ doc2query-T5 doc segmented (k1=2.56, b=0.59) command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2973 R@1K: 0.9563 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2892 nDCG@10: 0.6247 R@1K: 0.7069 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.4016 nDCG@10: 0.5711 R@1K: 0.8156 - name: bm25-rm3-d2q-t5-doc-segmented-default display: BM25+RM3 w/ doc2query-T5 doc segmented (k1=0.9, b=0.4) display-html: BM25+RM3 w/ doc2query-T5 doc segmented (k1=0.9, b=0.4) display-row: "[1] — (2d)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-d2q-t5-docvectors --topics $topics --output $output --bm25 --rm3 --k1 0.9 --b 0.4 --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.2803 R@1K: 0.9551 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.3030 nDCG@10: 0.6290 R@1K: 0.7483 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.4271 nDCG@10: 0.5851 R@1K: 0.8266 - name: unicoil-noexp-otf display: "uniCOIL (noexp): otf" display-html: "uniCOIL (noexp): on-the-fly query inference" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-unicoil-noexp --topics $topics --encoder castorini/unicoil-noexp-msmarco-passage --output $output --impact --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.3410 R@1K: 0.9420 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2661 nDCG@10: 0.6347 R@1K: 0.6385 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.3698 nDCG@10: 0.5906 R@1K: 0.7621 - name: unicoil-noexp display: "uniCOIL (noexp): pre-encoded" display-html: "uniCOIL (noexp): pre-encoded queries" display-row: "[1] — (3a)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-unicoil-noexp --topics $topics --output $output --impact --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev-unicoil-noexp eval_key: msmarco-doc-dev scores: - MRR@10: 0.3409 R@1K: 0.9420 - topic_key: dl19-doc-unicoil-noexp eval_key: dl19-doc scores: - MAP: 0.2665 nDCG@10: 0.6349 R@1K: 0.6391 - topic_key: dl20-unicoil-noexp eval_key: dl20-doc scores: - MAP: 0.3698 nDCG@10: 0.5893 R@1K: 0.7623 - name: unicoil-otf display: "uniCOIL (w/ doc2query-T5): otf" display-html: "uniCOIL (w/ doc2query-T5): on-the-fly query inference" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-unicoil --topics $topics --encoder castorini/unicoil-msmarco-passage --output $output --impact --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev eval_key: msmarco-doc-dev scores: - MRR@10: 0.3532 R@1K: 0.9546 - topic_key: dl19-doc eval_key: dl19-doc scores: - MAP: 0.2789 nDCG@10: 0.6396 R@1K: 0.6654 - topic_key: dl20 eval_key: dl20-doc scores: - MAP: 0.3881 nDCG@10: 0.6030 R@1K: 0.7866 - name: unicoil display: "uniCOIL (w/ doc2query-T5): pre-encoded" display-html: "uniCOIL (w/ doc2query-T5): pre-encoded queries" display-row: "[1] — (3b)" command: python -m pyserini.search.lucene --threads 16 --batch-size 128 --index msmarco-v1-doc-segmented-unicoil --topics $topics --output $output --impact --hits 10000 --max-passage-hits 1000 --max-passage topics: - topic_key: msmarco-doc-dev-unicoil eval_key: msmarco-doc-dev scores: - MRR@10: 0.3531 R@1K: 0.9546 - topic_key: dl19-doc-unicoil eval_key: dl19-doc scores: - MAP: 0.2789 nDCG@10: 0.6396 R@1K: 0.6652 - topic_key: dl20-unicoil eval_key: dl20-doc scores: - MAP: 0.3882 nDCG@10: 0.6033 R@1K: 0.7869