File size: 8,855 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
"""
Render OpenPose keypoints.
Code was ported to Python from the official C++ implementation https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/utilities/keypoint.cpp
"""
import cv2
import math
import numpy as np
from typing import List, Tuple

def get_keypoints_rectangle(keypoints: np.array, threshold: float) -> Tuple[float, float, float]:
    """
    Compute rectangle enclosing keypoints above the threshold.
    Args:
        keypoints (np.array): Keypoint array of shape (N, 3).
        threshold (float): Confidence visualization threshold.
    Returns:
        Tuple[float, float, float]: Rectangle width, height and area.
    """
    valid_ind = keypoints[:, -1] > threshold
    if valid_ind.sum() > 0:
        valid_keypoints = keypoints[valid_ind][:, :-1]
        max_x = valid_keypoints[:,0].max()
        max_y = valid_keypoints[:,1].max()
        min_x = valid_keypoints[:,0].min()
        min_y = valid_keypoints[:,1].min()
        width = max_x - min_x
        height = max_y - min_y
        area = width * height
        return width, height, area
    else:
        return 0,0,0

def render_keypoints(img: np.array,
                     keypoints: np.array,
                     pairs: List,
                     colors: List,
                     thickness_circle_ratio: float,
                     thickness_line_ratio_wrt_circle: float,
                     pose_scales: List,
                     threshold: float = 0.1,
                     alpha: float = 1.0) -> np.array:
    """
    Render keypoints on input image.
    Args:
        img (np.array): Input image of shape (H, W, 3) with pixel values in the [0,255] range.
        keypoints (np.array): Keypoint array of shape (N, 3).
        pairs (List): List of keypoint pairs per limb.
        colors: (List): List of colors per keypoint.
        thickness_circle_ratio (float): Circle thickness ratio.
        thickness_line_ratio_wrt_circle (float): Line thickness ratio wrt the circle.
        pose_scales (List): List of pose scales.
        threshold (float): Only visualize keypoints with confidence above the threshold.
    Returns:
        (np.array): Image of shape (H, W, 3) with keypoints drawn on top of the original image. 
    """
    img_orig = img.copy()
    width, height = img.shape[1], img.shape[2]
    area = width * height

    lineType = 8
    shift = 0
    numberColors = len(colors)
    thresholdRectangle = 0.1

    person_width, person_height, person_area = get_keypoints_rectangle(keypoints, thresholdRectangle)
    if person_area > 0:
        ratioAreas = min(1, max(person_width / width, person_height / height))
        thicknessRatio = np.maximum(np.round(math.sqrt(area) * thickness_circle_ratio * ratioAreas), 2)
        thicknessCircle = np.maximum(1, thicknessRatio if ratioAreas > 0.05 else -np.ones_like(thicknessRatio))
        thicknessLine = np.maximum(1, np.round(thicknessRatio * thickness_line_ratio_wrt_circle))
        radius = thicknessRatio / 2

        img = np.ascontiguousarray(img.copy())
        for i, pair in enumerate(pairs):
            index1, index2 = pair
            if keypoints[index1, -1] > threshold and keypoints[index2, -1] > threshold:
                thicknessLineScaled = int(round(min(thicknessLine[index1], thicknessLine[index2]) * pose_scales[0]))
                colorIndex = index2
                color = colors[colorIndex % numberColors]
                keypoint1 = keypoints[index1, :-1].astype(np.int)
                keypoint2 = keypoints[index2, :-1].astype(np.int)
                cv2.line(img, tuple(keypoint1.tolist()), tuple(keypoint2.tolist()), tuple(color.tolist()), thicknessLineScaled, lineType, shift)
        for part in range(len(keypoints)):
            faceIndex = part
            if keypoints[faceIndex, -1] > threshold:
                radiusScaled = int(round(radius[faceIndex] * pose_scales[0]))
                thicknessCircleScaled = int(round(thicknessCircle[faceIndex] * pose_scales[0]))
                colorIndex = part
                color = colors[colorIndex % numberColors]
                center = keypoints[faceIndex, :-1].astype(np.int)
                cv2.circle(img, tuple(center.tolist()), radiusScaled, tuple(color.tolist()), thicknessCircleScaled, lineType, shift)
    return img

def render_hand_keypoints(img, right_hand_keypoints, threshold=0.1, use_confidence=False, map_fn=lambda x: np.ones_like(x), alpha=1.0):
    if use_confidence and map_fn is not None:
        #thicknessCircleRatioLeft = 1./50 * map_fn(left_hand_keypoints[:, -1])
        thicknessCircleRatioRight = 1./50 * map_fn(right_hand_keypoints[:, -1])
    else:
        #thicknessCircleRatioLeft = 1./50 * np.ones(left_hand_keypoints.shape[0])
        thicknessCircleRatioRight = 1./50 * np.ones(right_hand_keypoints.shape[0])
    thicknessLineRatioWRTCircle = 0.75
    pairs = [0,1,  1,2,  2,3,  3,4,  0,5,  5,6,  6,7,  7,8,  0,9,  9,10,  10,11,  11,12,  0,13,  13,14,  14,15,  15,16,  0,17,  17,18,  18,19,  19,20]
    pairs = np.array(pairs).reshape(-1,2)

    colors = [100.,  100.,  100.,
              100.,    0.,    0.,
              150.,    0.,    0.,
              200.,    0.,    0.,
              255.,    0.,    0.,
              100.,  100.,    0.,
              150.,  150.,    0.,
              200.,  200.,    0.,
              255.,  255.,    0.,
                0.,  100.,   50.,
                0.,  150.,   75.,
                0.,  200.,  100.,
                0.,  255.,  125.,
                0.,   50.,  100.,
                0.,   75.,  150.,
                0.,  100.,  200.,
                0.,  125.,  255.,
              100.,    0.,  100.,
              150.,    0.,  150.,
              200.,    0.,  200.,
              255.,    0.,  255.]
    colors = np.array(colors).reshape(-1,3)
    #colors = np.zeros_like(colors)
    poseScales = [1]
    #img = render_keypoints(img, left_hand_keypoints, pairs, colors, thicknessCircleRatioLeft, thicknessLineRatioWRTCircle, poseScales, threshold, alpha=alpha)
    img = render_keypoints(img, right_hand_keypoints, pairs, colors, thicknessCircleRatioRight, thicknessLineRatioWRTCircle, poseScales, threshold, alpha=alpha)
    #img = render_keypoints(img, right_hand_keypoints, pairs, colors, thickness_circle_ratio, thickness_line_ratio_wrt_circle, pose_scales, 0.1)
    return img

def render_body_keypoints(img: np.array,
                          body_keypoints: np.array) -> np.array:
    """
    Render OpenPose body keypoints on input image.
    Args:
        img (np.array): Input image of shape (H, W, 3) with pixel values in the [0,255] range.
        body_keypoints (np.array): Keypoint array of shape (N, 3); 3 <====> (x, y, confidence).
    Returns:
        (np.array): Image of shape (H, W, 3) with keypoints drawn on top of the original image. 
    """

    thickness_circle_ratio = 1./75. * np.ones(body_keypoints.shape[0])
    thickness_line_ratio_wrt_circle = 0.75
    pairs = []
    pairs = [1,8,1,2,1,5,2,3,3,4,5,6,6,7,8,9,9,10,10,11,8,12,12,13,13,14,1,0,0,15,15,17,0,16,16,18,14,19,19,20,14,21,11,22,22,23,11,24]
    pairs = np.array(pairs).reshape(-1,2)
    colors = [255.,     0.,     85.,
              255.,     0.,     0.,
              255.,    85.,     0.,
              255.,   170.,     0.,
              255.,   255.,     0.,
              170.,   255.,     0.,
               85.,   255.,     0.,
                0.,   255.,     0.,
              255.,     0.,     0.,
                0.,   255.,    85.,
                0.,   255.,   170.,
                0.,   255.,   255.,
                0.,   170.,   255.,
                0.,    85.,   255.,
                0.,     0.,   255.,
              255.,     0.,   170.,
              170.,     0.,   255.,
              255.,     0.,   255.,
               85.,     0.,   255.,
                0.,     0.,   255.,
                0.,     0.,   255.,
                0.,     0.,   255.,
                0.,   255.,   255.,
                0.,   255.,   255.,
                0.,   255.,   255.]
    colors = np.array(colors).reshape(-1,3)
    pose_scales = [1]
    return render_keypoints(img, body_keypoints, pairs, colors, thickness_circle_ratio, thickness_line_ratio_wrt_circle, pose_scales, 0.1)

def render_openpose(img: np.array,
                    hand_keypoints: np.array) -> np.array:
    """
    Render keypoints in the OpenPose format on input image.
    Args:
        img (np.array): Input image of shape (H, W, 3) with pixel values in the [0,255] range.
        body_keypoints (np.array): Keypoint array of shape (N, 3); 3 <====> (x, y, confidence).
    Returns:
        (np.array): Image of shape (H, W, 3) with keypoints drawn on top of the original image. 
    """
    #img = render_body_keypoints(img, body_keypoints)
    img = render_hand_keypoints(img, hand_keypoints)
    return img