Spaces:
Build error
Build error
geopavlakos
commited on
Commit
•
d7a991a
1
Parent(s):
023c893
Initial commit
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +5 -5
- _DATA/data/mano/MANO_RIGHT.pkl +3 -0
- _DATA/data/mano_mean_params.npz +3 -0
- _DATA/hamer_ckpts/checkpoints/hamer.ckpt +3 -0
- _DATA/hamer_ckpts/dataset_config.yaml +42 -0
- _DATA/hamer_ckpts/model_config.yaml +111 -0
- _DATA/vitpose_ckpts/vitpose+_huge/wholebody.pth +3 -0
- app.py +234 -0
- assets/list.txt +0 -0
- assets/test1.jpg +0 -0
- assets/test2.jpg +0 -0
- assets/test3.jpg +0 -0
- assets/test4.jpg +0 -0
- assets/test5.jpg +0 -0
- hamer/__init__.py +0 -0
- hamer/configs/__init__.py +111 -0
- hamer/configs/cascade_mask_rcnn_vitdet_h_75ep.py +129 -0
- hamer/configs/datasets_tar.yaml +42 -0
- hamer/configs_hydra/data/mix_all.yaml +31 -0
- hamer/configs_hydra/data_filtering/low1.yaml +13 -0
- hamer/configs_hydra/experiment/default.yaml +29 -0
- hamer/configs_hydra/experiment/hamer_vit_transformer.yaml +51 -0
- hamer/configs_hydra/extras/default.yaml +8 -0
- hamer/configs_hydra/hydra/default.yaml +26 -0
- hamer/configs_hydra/launcher/local.yaml +13 -0
- hamer/configs_hydra/launcher/slurm.yaml +22 -0
- hamer/configs_hydra/paths/default.yaml +18 -0
- hamer/configs_hydra/train.yaml +47 -0
- hamer/configs_hydra/trainer/cpu.yaml +6 -0
- hamer/configs_hydra/trainer/ddp.yaml +14 -0
- hamer/configs_hydra/trainer/default.yaml +10 -0
- hamer/configs_hydra/trainer/default_hamer.yaml +8 -0
- hamer/configs_hydra/trainer/gpu.yaml +6 -0
- hamer/configs_hydra/trainer/mps.yaml +6 -0
- hamer/datasets/__init__.py +56 -0
- hamer/datasets/dataset.py +27 -0
- hamer/datasets/image_dataset.py +275 -0
- hamer/datasets/json_dataset.py +213 -0
- hamer/datasets/mocap_dataset.py +25 -0
- hamer/datasets/utils.py +993 -0
- hamer/datasets/vitdet_dataset.py +97 -0
- hamer/models/__init__.py +46 -0
- hamer/models/backbones/__init__.py +7 -0
- hamer/models/backbones/vit.py +348 -0
- hamer/models/components/__init__.py +0 -0
- hamer/models/components/pose_transformer.py +358 -0
- hamer/models/components/t_cond_mlp.py +199 -0
- hamer/models/discriminator.py +99 -0
- hamer/models/hamer.py +363 -0
- hamer/models/heads/__init__.py +1 -0
README.md
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
---
|
2 |
-
title: HaMeR
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.8.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: HaMeR
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.8.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
11 |
|
12 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
_DATA/data/mano/MANO_RIGHT.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45d60aa3b27ef9107a7afd4e00808f307fd91111e1cfa35afd5c4a62de264767
|
3 |
+
size 3821356
|
_DATA/data/mano_mean_params.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:efc0ec58e4a5cef78f3abfb4e8f91623b8950be9eff8b8e0dbb0d036ebc63988
|
3 |
+
size 1178
|
_DATA/hamer_ckpts/checkpoints/hamer.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5cc06f294d88a92dee24e603480aab04de532b49f0e08200804ee7d90e16f53
|
3 |
+
size 2689536166
|
_DATA/hamer_ckpts/dataset_config.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
COCOW-TRAIN:
|
2 |
+
TYPE: ImageDataset
|
3 |
+
URLS: hamer_training_data/dataset_tars/cocow-train/{000000..000036}.tar
|
4 |
+
epoch_size: 78666
|
5 |
+
DEX-TRAIN:
|
6 |
+
TYPE: ImageDataset
|
7 |
+
URLS: hamer_training_data/dataset_tars/dex-train/{000000..000406}.tar
|
8 |
+
epoch_size: 406888
|
9 |
+
FREIHAND-MOCAP:
|
10 |
+
DATASET_FILE: hamer_training_data/freihand_mocap.npz
|
11 |
+
FREIHAND-TRAIN:
|
12 |
+
TYPE: ImageDataset
|
13 |
+
URLS: hamer_training_data/dataset_tars/freihand-train/{000000..000130}.tar
|
14 |
+
epoch_size: 130240
|
15 |
+
H2O3D-TRAIN:
|
16 |
+
TYPE: ImageDataset
|
17 |
+
URLS: hamer_training_data/dataset_tars/h2o3d-train/{000000..000060}.tar
|
18 |
+
epoch_size: 121996
|
19 |
+
HALPE-TRAIN:
|
20 |
+
TYPE: ImageDataset
|
21 |
+
URLS: hamer_training_data/dataset_tars/halpe-train/{000000..000022}.tar
|
22 |
+
epoch_size: 34289
|
23 |
+
HO3D-TRAIN:
|
24 |
+
TYPE: ImageDataset
|
25 |
+
URLS: hamer_training_data/dataset_tars/ho3d-train/{000000..000083}.tar
|
26 |
+
epoch_size: 83325
|
27 |
+
INTERHAND26M-TRAIN:
|
28 |
+
TYPE: ImageDataset
|
29 |
+
URLS: hamer_training_data/dataset_tars/interhand26m-train/{000000..001056}.tar
|
30 |
+
epoch_size: 1424632
|
31 |
+
MPIINZSL-TRAIN:
|
32 |
+
TYPE: ImageDataset
|
33 |
+
URLS: hamer_training_data/dataset_tars/mpiinzsl-train/{000000..000015}.tar
|
34 |
+
epoch_size: 15184
|
35 |
+
MTC-TRAIN:
|
36 |
+
TYPE: ImageDataset
|
37 |
+
URLS: hamer_training_data/dataset_tars/mtc-train/{000000..000306}.tar
|
38 |
+
epoch_size: 363947
|
39 |
+
RHD-TRAIN:
|
40 |
+
TYPE: ImageDataset
|
41 |
+
URLS: hamer_training_data/dataset_tars/rhd-train/{000000..000041}.tar
|
42 |
+
epoch_size: 61705
|
_DATA/hamer_ckpts/model_config.yaml
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task_name: train
|
2 |
+
tags:
|
3 |
+
- dev
|
4 |
+
train: true
|
5 |
+
test: false
|
6 |
+
ckpt_path: null
|
7 |
+
seed: null
|
8 |
+
DATASETS:
|
9 |
+
TRAIN:
|
10 |
+
FREIHAND-TRAIN:
|
11 |
+
WEIGHT: 0.25
|
12 |
+
INTERHAND26M-TRAIN:
|
13 |
+
WEIGHT: 0.25
|
14 |
+
MTC-TRAIN:
|
15 |
+
WEIGHT: 0.1
|
16 |
+
RHD-TRAIN:
|
17 |
+
WEIGHT: 0.05
|
18 |
+
COCOW-TRAIN:
|
19 |
+
WEIGHT: 0.1
|
20 |
+
HALPE-TRAIN:
|
21 |
+
WEIGHT: 0.05
|
22 |
+
MPIINZSL-TRAIN:
|
23 |
+
WEIGHT: 0.05
|
24 |
+
HO3D-TRAIN:
|
25 |
+
WEIGHT: 0.05
|
26 |
+
H2O3D-TRAIN:
|
27 |
+
WEIGHT: 0.05
|
28 |
+
DEX-TRAIN:
|
29 |
+
WEIGHT: 0.05
|
30 |
+
VAL:
|
31 |
+
FREIHAND-TRAIN:
|
32 |
+
WEIGHT: 1.0
|
33 |
+
MOCAP: FREIHAND-MOCAP
|
34 |
+
BETAS_REG: true
|
35 |
+
CONFIG:
|
36 |
+
SCALE_FACTOR: 0.3
|
37 |
+
ROT_FACTOR: 30
|
38 |
+
TRANS_FACTOR: 0.02
|
39 |
+
COLOR_SCALE: 0.2
|
40 |
+
ROT_AUG_RATE: 0.6
|
41 |
+
TRANS_AUG_RATE: 0.5
|
42 |
+
DO_FLIP: false
|
43 |
+
FLIP_AUG_RATE: 0.0
|
44 |
+
EXTREME_CROP_AUG_RATE: 0.0
|
45 |
+
EXTREME_CROP_AUG_LEVEL: 1
|
46 |
+
extras:
|
47 |
+
ignore_warnings: false
|
48 |
+
enforce_tags: true
|
49 |
+
print_config: true
|
50 |
+
exp_name: hamer
|
51 |
+
MANO:
|
52 |
+
DATA_DIR: _DATA/data/
|
53 |
+
MODEL_PATH: _DATA/data/mano
|
54 |
+
GENDER: neutral
|
55 |
+
NUM_HAND_JOINTS: 15
|
56 |
+
MEAN_PARAMS: _DATA/data/mano_mean_params.npz
|
57 |
+
CREATE_BODY_POSE: false
|
58 |
+
EXTRA:
|
59 |
+
FOCAL_LENGTH: 5000
|
60 |
+
NUM_LOG_IMAGES: 4
|
61 |
+
NUM_LOG_SAMPLES_PER_IMAGE: 8
|
62 |
+
PELVIS_IND: 0
|
63 |
+
GENERAL:
|
64 |
+
TOTAL_STEPS: 1000000
|
65 |
+
LOG_STEPS: 1000
|
66 |
+
VAL_STEPS: 1000
|
67 |
+
CHECKPOINT_STEPS: 10000
|
68 |
+
CHECKPOINT_SAVE_TOP_K: 1
|
69 |
+
NUM_WORKERS: 8
|
70 |
+
PREFETCH_FACTOR: 2
|
71 |
+
TRAIN:
|
72 |
+
LR: 1.0e-05
|
73 |
+
WEIGHT_DECAY: 0.0001
|
74 |
+
BATCH_SIZE: 32
|
75 |
+
LOSS_REDUCTION: mean
|
76 |
+
NUM_TRAIN_SAMPLES: 2
|
77 |
+
NUM_TEST_SAMPLES: 64
|
78 |
+
POSE_2D_NOISE_RATIO: 0.01
|
79 |
+
SMPL_PARAM_NOISE_RATIO: 0.005
|
80 |
+
MODEL:
|
81 |
+
IMAGE_SIZE: 256
|
82 |
+
IMAGE_MEAN:
|
83 |
+
- 0.485
|
84 |
+
- 0.456
|
85 |
+
- 0.406
|
86 |
+
IMAGE_STD:
|
87 |
+
- 0.229
|
88 |
+
- 0.224
|
89 |
+
- 0.225
|
90 |
+
BACKBONE:
|
91 |
+
TYPE: vit
|
92 |
+
PRETRAINED_WEIGHTS: hamer_training_data/vitpose_backbone.pth
|
93 |
+
MANO_HEAD:
|
94 |
+
TYPE: transformer_decoder
|
95 |
+
IN_CHANNELS: 2048
|
96 |
+
TRANSFORMER_DECODER:
|
97 |
+
depth: 6
|
98 |
+
heads: 8
|
99 |
+
mlp_dim: 1024
|
100 |
+
dim_head: 64
|
101 |
+
dropout: 0.0
|
102 |
+
emb_dropout: 0.0
|
103 |
+
norm: layer
|
104 |
+
context_dim: 1280
|
105 |
+
LOSS_WEIGHTS:
|
106 |
+
KEYPOINTS_3D: 0.05
|
107 |
+
KEYPOINTS_2D: 0.01
|
108 |
+
GLOBAL_ORIENT: 0.001
|
109 |
+
HAND_POSE: 0.001
|
110 |
+
BETAS: 0.0005
|
111 |
+
ADVERSARIAL: 0.0005
|
_DATA/vitpose_ckpts/vitpose+_huge/wholebody.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0555e1e2392e6a2be2d9265368f344d70ccbfd656ad480aa5c1de2e604519c9
|
3 |
+
size 3807742341
|
app.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
import tempfile
|
5 |
+
import sys
|
6 |
+
import cv2
|
7 |
+
import gradio as gr
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
# print file path
|
13 |
+
print(os.path.abspath(__file__))
|
14 |
+
os.environ["PYOPENGL_PLATFORM"] = "egl"
|
15 |
+
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
|
16 |
+
os.system('pip install /home/user/app/pyrender')
|
17 |
+
sys.path.append('/home/user/app/pyrender')
|
18 |
+
|
19 |
+
from hamer.configs import get_config
|
20 |
+
from hamer.datasets.vitdet_dataset import (DEFAULT_MEAN, DEFAULT_STD,
|
21 |
+
ViTDetDataset)
|
22 |
+
from hamer.models import HAMER
|
23 |
+
from hamer.utils import recursive_to
|
24 |
+
from hamer.utils.renderer import Renderer, cam_crop_to_full
|
25 |
+
|
26 |
+
try:
|
27 |
+
import detectron2
|
28 |
+
except:
|
29 |
+
import os
|
30 |
+
os.system('pip install --upgrade pip')
|
31 |
+
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
|
32 |
+
|
33 |
+
#try:
|
34 |
+
# from vitpose_model import ViTPoseModel
|
35 |
+
#except:
|
36 |
+
# os.system('pip install -v -e /home/user/app/vendor/ViTPose')
|
37 |
+
# from vitpose_model import ViTPoseModel
|
38 |
+
from vitpose_model import ViTPoseModel
|
39 |
+
|
40 |
+
OUT_FOLDER = 'demo_out'
|
41 |
+
os.makedirs(OUT_FOLDER, exist_ok=True)
|
42 |
+
|
43 |
+
# Setup HaMeR model
|
44 |
+
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
|
45 |
+
DEFAULT_CHECKPOINT='_DATA/hamer_ckpts/checkpoints/hamer.ckpt'
|
46 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
47 |
+
model_cfg = str(Path(DEFAULT_CHECKPOINT).parent.parent / 'model_config.yaml')
|
48 |
+
model_cfg = get_config(model_cfg)
|
49 |
+
model = HAMER.load_from_checkpoint(DEFAULT_CHECKPOINT, strict=False, cfg=model_cfg).to(device)
|
50 |
+
model.eval()
|
51 |
+
|
52 |
+
|
53 |
+
# Load detector
|
54 |
+
from detectron2.config import LazyConfig
|
55 |
+
|
56 |
+
from hamer.utils.utils_detectron2 import DefaultPredictor_Lazy
|
57 |
+
|
58 |
+
detectron2_cfg = LazyConfig.load(f"vendor/detectron2/projects/ViTDet/configs/COCO/cascade_mask_rcnn_vitdet_h_75ep.py")
|
59 |
+
detectron2_cfg.train.init_checkpoint = "https://dl.fbaipublicfiles.com/detectron2/ViTDet/COCO/cascade_mask_rcnn_vitdet_h/f328730692/model_final_f05665.pkl"
|
60 |
+
for i in range(3):
|
61 |
+
detectron2_cfg.model.roi_heads.box_predictors[i].test_score_thresh = 0.25
|
62 |
+
detector = DefaultPredictor_Lazy(detectron2_cfg)
|
63 |
+
|
64 |
+
# Setup the renderer
|
65 |
+
renderer = Renderer(model_cfg, faces=model.mano.faces)
|
66 |
+
|
67 |
+
# keypoint detector
|
68 |
+
cpm = ViTPoseModel(device)
|
69 |
+
|
70 |
+
import numpy as np
|
71 |
+
|
72 |
+
def infer(in_pil_img, in_threshold=0.8, out_pil_img=None):
|
73 |
+
|
74 |
+
open_cv_image = np.array(in_pil_img)
|
75 |
+
# Convert RGB to BGR
|
76 |
+
open_cv_image = open_cv_image[:, :, ::-1].copy()
|
77 |
+
print("EEEEE", open_cv_image.shape)
|
78 |
+
det_out = detector(open_cv_image)
|
79 |
+
det_instances = det_out['instances']
|
80 |
+
valid_idx = (det_instances.pred_classes==0) & (det_instances.scores > in_threshold)
|
81 |
+
pred_bboxes=det_instances.pred_boxes.tensor[valid_idx].cpu().numpy()
|
82 |
+
pred_scores=det_instances.scores[valid_idx].cpu().numpy()
|
83 |
+
|
84 |
+
|
85 |
+
# Detect human keypoints for each person
|
86 |
+
vitposes_out = cpm.predict_pose(
|
87 |
+
open_cv_image,
|
88 |
+
[np.concatenate([pred_bboxes, pred_scores[:, None]], axis=1)],
|
89 |
+
)
|
90 |
+
|
91 |
+
bboxes = []
|
92 |
+
is_right = []
|
93 |
+
|
94 |
+
# Use hands based on hand keypoint detections
|
95 |
+
for vitposes in vitposes_out:
|
96 |
+
left_hand_keyp = vitposes['keypoints'][-42:-21]
|
97 |
+
right_hand_keyp = vitposes['keypoints'][-21:]
|
98 |
+
|
99 |
+
# Rejecting not confident detections (this could be improved)
|
100 |
+
keyp = left_hand_keyp
|
101 |
+
valid = keyp[:,2] > 0.5
|
102 |
+
if sum(valid) > 3:
|
103 |
+
bbox = [keyp[valid,0].min(), keyp[valid,1].min(), keyp[valid,0].max(), keyp[valid,1].max()]
|
104 |
+
bboxes.append(bbox)
|
105 |
+
is_right.append(0)
|
106 |
+
keyp = right_hand_keyp
|
107 |
+
valid = keyp[:,2] > 0.5
|
108 |
+
if sum(valid) > 3:
|
109 |
+
bbox = [keyp[valid,0].min(), keyp[valid,1].min(), keyp[valid,0].max(), keyp[valid,1].max()]
|
110 |
+
bboxes.append(bbox)
|
111 |
+
is_right.append(1)
|
112 |
+
|
113 |
+
if len(bboxes) == 0:
|
114 |
+
return None, []
|
115 |
+
|
116 |
+
boxes = np.stack(bboxes)
|
117 |
+
right = np.stack(is_right)
|
118 |
+
|
119 |
+
|
120 |
+
# Run HaMeR on all detected humans
|
121 |
+
dataset = ViTDetDataset(model_cfg, open_cv_image, boxes, right)
|
122 |
+
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8, shuffle=False, num_workers=0)
|
123 |
+
|
124 |
+
all_verts = []
|
125 |
+
all_cam_t = []
|
126 |
+
all_right = []
|
127 |
+
all_mesh_paths = []
|
128 |
+
|
129 |
+
temp_name = next(tempfile._get_candidate_names())
|
130 |
+
|
131 |
+
for batch in dataloader:
|
132 |
+
batch = recursive_to(batch, device)
|
133 |
+
with torch.no_grad():
|
134 |
+
out = model(batch)
|
135 |
+
|
136 |
+
multiplier = (2*batch['right']-1)
|
137 |
+
pred_cam = out['pred_cam']
|
138 |
+
pred_cam[:,1] = multiplier*pred_cam[:,1]
|
139 |
+
box_center = batch["box_center"].float()
|
140 |
+
box_size = batch["box_size"].float()
|
141 |
+
img_size = batch["img_size"].float()
|
142 |
+
multiplier = (2*batch['right']-1)
|
143 |
+
render_size = img_size
|
144 |
+
scaled_focal_length = model_cfg.EXTRA.FOCAL_LENGTH / model_cfg.MODEL.IMAGE_SIZE * img_size.max()
|
145 |
+
pred_cam_t = cam_crop_to_full(pred_cam, box_center, box_size, render_size, scaled_focal_length).detach().cpu().numpy()
|
146 |
+
|
147 |
+
# Render the result
|
148 |
+
batch_size = batch['img'].shape[0]
|
149 |
+
for n in range(batch_size):
|
150 |
+
# Get filename from path img_path
|
151 |
+
# img_fn, _ = os.path.splitext(os.path.basename(img_path))
|
152 |
+
person_id = int(batch['personid'][n])
|
153 |
+
white_img = (torch.ones_like(batch['img'][n]).cpu() - DEFAULT_MEAN[:,None,None]/255) / (DEFAULT_STD[:,None,None]/255)
|
154 |
+
input_patch = batch['img'][n].cpu() * (DEFAULT_STD[:,None,None]/255) + (DEFAULT_MEAN[:,None,None]/255)
|
155 |
+
input_patch = input_patch.permute(1,2,0).numpy()
|
156 |
+
|
157 |
+
|
158 |
+
verts = out['pred_vertices'][n].detach().cpu().numpy()
|
159 |
+
is_right = batch['right'][n].cpu().numpy()
|
160 |
+
verts[:,0] = (2*is_right-1)*verts[:,0]
|
161 |
+
cam_t = pred_cam_t[n]
|
162 |
+
|
163 |
+
all_verts.append(verts)
|
164 |
+
all_cam_t.append(cam_t)
|
165 |
+
all_right.append(is_right)
|
166 |
+
|
167 |
+
# Save all meshes to disk
|
168 |
+
# if args.save_mesh:
|
169 |
+
if True:
|
170 |
+
camera_translation = cam_t.copy()
|
171 |
+
tmesh = renderer.vertices_to_trimesh(verts, camera_translation, LIGHT_BLUE, is_right=is_right)
|
172 |
+
|
173 |
+
temp_path = os.path.join(f'{OUT_FOLDER}/{temp_name}_{person_id}.obj')
|
174 |
+
tmesh.export(temp_path)
|
175 |
+
all_mesh_paths.append(temp_path)
|
176 |
+
|
177 |
+
# Render front view
|
178 |
+
if len(all_verts) > 0:
|
179 |
+
misc_args = dict(
|
180 |
+
mesh_base_color=LIGHT_BLUE,
|
181 |
+
scene_bg_color=(1, 1, 1),
|
182 |
+
focal_length=scaled_focal_length,
|
183 |
+
)
|
184 |
+
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=render_size[n], is_right=all_right, **misc_args)
|
185 |
+
|
186 |
+
# Overlay image
|
187 |
+
input_img = open_cv_image.astype(np.float32)[:,:,::-1]/255.0
|
188 |
+
input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
|
189 |
+
input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]
|
190 |
+
|
191 |
+
# convert to PIL image
|
192 |
+
out_pil_img = Image.fromarray((input_img_overlay*255).astype(np.uint8))
|
193 |
+
|
194 |
+
return out_pil_img, all_mesh_paths
|
195 |
+
else:
|
196 |
+
return None, []
|
197 |
+
|
198 |
+
|
199 |
+
with gr.Blocks(title="HaMeR", css=".gradio-container") as demo:
|
200 |
+
|
201 |
+
gr.HTML("""<div style="font-weight:bold; text-align:center; color:royalblue;">HaMeR</div>""")
|
202 |
+
|
203 |
+
with gr.Row():
|
204 |
+
with gr.Column():
|
205 |
+
input_image = gr.Image(label="Input image", type="pil")
|
206 |
+
with gr.Column():
|
207 |
+
output_image = gr.Image(label="Reconstructions", type="pil")
|
208 |
+
output_meshes = gr.File(label="3D meshes")
|
209 |
+
|
210 |
+
gr.HTML("""<br/>""")
|
211 |
+
|
212 |
+
with gr.Row():
|
213 |
+
threshold = gr.Slider(0, 1.0, value=0.6, label='Detection Threshold')
|
214 |
+
send_btn = gr.Button("Infer")
|
215 |
+
send_btn.click(fn=infer, inputs=[input_image, threshold], outputs=[output_image, output_meshes])
|
216 |
+
|
217 |
+
# with gr.Row():
|
218 |
+
example_images = gr.Examples([
|
219 |
+
['/home/user/app/assets/test1.jpg'],
|
220 |
+
['/home/user/app/assets/test2.jpg'],
|
221 |
+
['/home/user/app/assets/test3.jpg'],
|
222 |
+
['/home/user/app/assets/test4.jpg'],
|
223 |
+
['/home/user/app/assets/test5.jpg'],
|
224 |
+
],
|
225 |
+
inputs=[input_image, 0.6])
|
226 |
+
|
227 |
+
|
228 |
+
#demo.queue()
|
229 |
+
demo.launch(debug=True)
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
### EOF ###
|
assets/list.txt
ADDED
File without changes
|
assets/test1.jpg
ADDED
assets/test2.jpg
ADDED
assets/test3.jpg
ADDED
assets/test4.jpg
ADDED
assets/test5.jpg
ADDED
hamer/__init__.py
ADDED
File without changes
|
hamer/configs/__init__.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict
|
3 |
+
from yacs.config import CfgNode as CN
|
4 |
+
|
5 |
+
CACHE_DIR_HAMER = "./_DATA"
|
6 |
+
|
7 |
+
def to_lower(x: Dict) -> Dict:
|
8 |
+
"""
|
9 |
+
Convert all dictionary keys to lowercase
|
10 |
+
Args:
|
11 |
+
x (dict): Input dictionary
|
12 |
+
Returns:
|
13 |
+
dict: Output dictionary with all keys converted to lowercase
|
14 |
+
"""
|
15 |
+
return {k.lower(): v for k, v in x.items()}
|
16 |
+
|
17 |
+
_C = CN(new_allowed=True)
|
18 |
+
|
19 |
+
_C.GENERAL = CN(new_allowed=True)
|
20 |
+
_C.GENERAL.RESUME = True
|
21 |
+
_C.GENERAL.TIME_TO_RUN = 3300
|
22 |
+
_C.GENERAL.VAL_STEPS = 100
|
23 |
+
_C.GENERAL.LOG_STEPS = 100
|
24 |
+
_C.GENERAL.CHECKPOINT_STEPS = 20000
|
25 |
+
_C.GENERAL.CHECKPOINT_DIR = "checkpoints"
|
26 |
+
_C.GENERAL.SUMMARY_DIR = "tensorboard"
|
27 |
+
_C.GENERAL.NUM_GPUS = 1
|
28 |
+
_C.GENERAL.NUM_WORKERS = 4
|
29 |
+
_C.GENERAL.MIXED_PRECISION = True
|
30 |
+
_C.GENERAL.ALLOW_CUDA = True
|
31 |
+
_C.GENERAL.PIN_MEMORY = False
|
32 |
+
_C.GENERAL.DISTRIBUTED = False
|
33 |
+
_C.GENERAL.LOCAL_RANK = 0
|
34 |
+
_C.GENERAL.USE_SYNCBN = False
|
35 |
+
_C.GENERAL.WORLD_SIZE = 1
|
36 |
+
|
37 |
+
_C.TRAIN = CN(new_allowed=True)
|
38 |
+
_C.TRAIN.NUM_EPOCHS = 100
|
39 |
+
_C.TRAIN.BATCH_SIZE = 32
|
40 |
+
_C.TRAIN.SHUFFLE = True
|
41 |
+
_C.TRAIN.WARMUP = False
|
42 |
+
_C.TRAIN.NORMALIZE_PER_IMAGE = False
|
43 |
+
_C.TRAIN.CLIP_GRAD = False
|
44 |
+
_C.TRAIN.CLIP_GRAD_VALUE = 1.0
|
45 |
+
_C.LOSS_WEIGHTS = CN(new_allowed=True)
|
46 |
+
|
47 |
+
_C.DATASETS = CN(new_allowed=True)
|
48 |
+
|
49 |
+
_C.MODEL = CN(new_allowed=True)
|
50 |
+
_C.MODEL.IMAGE_SIZE = 224
|
51 |
+
|
52 |
+
_C.EXTRA = CN(new_allowed=True)
|
53 |
+
_C.EXTRA.FOCAL_LENGTH = 5000
|
54 |
+
|
55 |
+
_C.DATASETS.CONFIG = CN(new_allowed=True)
|
56 |
+
_C.DATASETS.CONFIG.SCALE_FACTOR = 0.3
|
57 |
+
_C.DATASETS.CONFIG.ROT_FACTOR = 30
|
58 |
+
_C.DATASETS.CONFIG.TRANS_FACTOR = 0.02
|
59 |
+
_C.DATASETS.CONFIG.COLOR_SCALE = 0.2
|
60 |
+
_C.DATASETS.CONFIG.ROT_AUG_RATE = 0.6
|
61 |
+
_C.DATASETS.CONFIG.TRANS_AUG_RATE = 0.5
|
62 |
+
_C.DATASETS.CONFIG.DO_FLIP = False
|
63 |
+
_C.DATASETS.CONFIG.FLIP_AUG_RATE = 0.5
|
64 |
+
_C.DATASETS.CONFIG.EXTREME_CROP_AUG_RATE = 0.10
|
65 |
+
|
66 |
+
def default_config() -> CN:
|
67 |
+
"""
|
68 |
+
Get a yacs CfgNode object with the default config values.
|
69 |
+
"""
|
70 |
+
# Return a clone so that the defaults will not be altered
|
71 |
+
# This is for the "local variable" use pattern
|
72 |
+
return _C.clone()
|
73 |
+
|
74 |
+
def dataset_config() -> CN:
|
75 |
+
"""
|
76 |
+
Get dataset config file
|
77 |
+
Returns:
|
78 |
+
CfgNode: Dataset config as a yacs CfgNode object.
|
79 |
+
"""
|
80 |
+
cfg = CN(new_allowed=True)
|
81 |
+
config_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'datasets_tar.yaml')
|
82 |
+
cfg.merge_from_file(config_file)
|
83 |
+
cfg.freeze()
|
84 |
+
return cfg
|
85 |
+
|
86 |
+
def get_config(config_file: str, merge: bool = True, update_cachedir: bool = False) -> CN:
|
87 |
+
"""
|
88 |
+
Read a config file and optionally merge it with the default config file.
|
89 |
+
Args:
|
90 |
+
config_file (str): Path to config file.
|
91 |
+
merge (bool): Whether to merge with the default config or not.
|
92 |
+
Returns:
|
93 |
+
CfgNode: Config as a yacs CfgNode object.
|
94 |
+
"""
|
95 |
+
if merge:
|
96 |
+
cfg = default_config()
|
97 |
+
else:
|
98 |
+
cfg = CN(new_allowed=True)
|
99 |
+
cfg.merge_from_file(config_file)
|
100 |
+
|
101 |
+
if update_cachedir:
|
102 |
+
def update_path(path: str) -> str:
|
103 |
+
if os.path.isabs(path):
|
104 |
+
return path
|
105 |
+
return os.path.join(CACHE_DIR_HAMER, path)
|
106 |
+
|
107 |
+
cfg.MANO.MODEL_PATH = update_path(cfg.MANO.MODEL_PATH)
|
108 |
+
cfg.MANO.MEAN_PARAMS = update_path(cfg.MANO.MEAN_PARAMS)
|
109 |
+
|
110 |
+
cfg.freeze()
|
111 |
+
return cfg
|
hamer/configs/cascade_mask_rcnn_vitdet_h_75ep.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## coco_loader_lsj.py
|
2 |
+
|
3 |
+
import detectron2.data.transforms as T
|
4 |
+
from detectron2 import model_zoo
|
5 |
+
from detectron2.config import LazyCall as L
|
6 |
+
|
7 |
+
# Data using LSJ
|
8 |
+
image_size = 1024
|
9 |
+
dataloader = model_zoo.get_config("common/data/coco.py").dataloader
|
10 |
+
dataloader.train.mapper.augmentations = [
|
11 |
+
L(T.RandomFlip)(horizontal=True), # flip first
|
12 |
+
L(T.ResizeScale)(
|
13 |
+
min_scale=0.1, max_scale=2.0, target_height=image_size, target_width=image_size
|
14 |
+
),
|
15 |
+
L(T.FixedSizeCrop)(crop_size=(image_size, image_size), pad=False),
|
16 |
+
]
|
17 |
+
dataloader.train.mapper.image_format = "RGB"
|
18 |
+
dataloader.train.total_batch_size = 64
|
19 |
+
# recompute boxes due to cropping
|
20 |
+
dataloader.train.mapper.recompute_boxes = True
|
21 |
+
|
22 |
+
dataloader.test.mapper.augmentations = [
|
23 |
+
L(T.ResizeShortestEdge)(short_edge_length=image_size, max_size=image_size),
|
24 |
+
]
|
25 |
+
|
26 |
+
from functools import partial
|
27 |
+
from fvcore.common.param_scheduler import MultiStepParamScheduler
|
28 |
+
|
29 |
+
from detectron2 import model_zoo
|
30 |
+
from detectron2.config import LazyCall as L
|
31 |
+
from detectron2.solver import WarmupParamScheduler
|
32 |
+
from detectron2.modeling.backbone.vit import get_vit_lr_decay_rate
|
33 |
+
|
34 |
+
# mask_rcnn_vitdet_b_100ep.py
|
35 |
+
|
36 |
+
model = model_zoo.get_config("common/models/mask_rcnn_vitdet.py").model
|
37 |
+
|
38 |
+
# Initialization and trainer settings
|
39 |
+
train = model_zoo.get_config("common/train.py").train
|
40 |
+
train.amp.enabled = True
|
41 |
+
train.ddp.fp16_compression = True
|
42 |
+
train.init_checkpoint = "detectron2://ImageNetPretrained/MAE/mae_pretrain_vit_base.pth"
|
43 |
+
|
44 |
+
|
45 |
+
# Schedule
|
46 |
+
# 100 ep = 184375 iters * 64 images/iter / 118000 images/ep
|
47 |
+
train.max_iter = 184375
|
48 |
+
|
49 |
+
lr_multiplier = L(WarmupParamScheduler)(
|
50 |
+
scheduler=L(MultiStepParamScheduler)(
|
51 |
+
values=[1.0, 0.1, 0.01],
|
52 |
+
milestones=[163889, 177546],
|
53 |
+
num_updates=train.max_iter,
|
54 |
+
),
|
55 |
+
warmup_length=250 / train.max_iter,
|
56 |
+
warmup_factor=0.001,
|
57 |
+
)
|
58 |
+
|
59 |
+
# Optimizer
|
60 |
+
optimizer = model_zoo.get_config("common/optim.py").AdamW
|
61 |
+
optimizer.params.lr_factor_func = partial(get_vit_lr_decay_rate, num_layers=12, lr_decay_rate=0.7)
|
62 |
+
optimizer.params.overrides = {"pos_embed": {"weight_decay": 0.0}}
|
63 |
+
|
64 |
+
# cascade_mask_rcnn_vitdet_b_100ep.py
|
65 |
+
|
66 |
+
from detectron2.config import LazyCall as L
|
67 |
+
from detectron2.layers import ShapeSpec
|
68 |
+
from detectron2.modeling.box_regression import Box2BoxTransform
|
69 |
+
from detectron2.modeling.matcher import Matcher
|
70 |
+
from detectron2.modeling.roi_heads import (
|
71 |
+
FastRCNNOutputLayers,
|
72 |
+
FastRCNNConvFCHead,
|
73 |
+
CascadeROIHeads,
|
74 |
+
)
|
75 |
+
|
76 |
+
# arguments that don't exist for Cascade R-CNN
|
77 |
+
[model.roi_heads.pop(k) for k in ["box_head", "box_predictor", "proposal_matcher"]]
|
78 |
+
|
79 |
+
model.roi_heads.update(
|
80 |
+
_target_=CascadeROIHeads,
|
81 |
+
box_heads=[
|
82 |
+
L(FastRCNNConvFCHead)(
|
83 |
+
input_shape=ShapeSpec(channels=256, height=7, width=7),
|
84 |
+
conv_dims=[256, 256, 256, 256],
|
85 |
+
fc_dims=[1024],
|
86 |
+
conv_norm="LN",
|
87 |
+
)
|
88 |
+
for _ in range(3)
|
89 |
+
],
|
90 |
+
box_predictors=[
|
91 |
+
L(FastRCNNOutputLayers)(
|
92 |
+
input_shape=ShapeSpec(channels=1024),
|
93 |
+
test_score_thresh=0.05,
|
94 |
+
box2box_transform=L(Box2BoxTransform)(weights=(w1, w1, w2, w2)),
|
95 |
+
cls_agnostic_bbox_reg=True,
|
96 |
+
num_classes="${...num_classes}",
|
97 |
+
)
|
98 |
+
for (w1, w2) in [(10, 5), (20, 10), (30, 15)]
|
99 |
+
],
|
100 |
+
proposal_matchers=[
|
101 |
+
L(Matcher)(thresholds=[th], labels=[0, 1], allow_low_quality_matches=False)
|
102 |
+
for th in [0.5, 0.6, 0.7]
|
103 |
+
],
|
104 |
+
)
|
105 |
+
|
106 |
+
# cascade_mask_rcnn_vitdet_h_75ep.py
|
107 |
+
|
108 |
+
from functools import partial
|
109 |
+
|
110 |
+
train.init_checkpoint = "detectron2://ImageNetPretrained/MAE/mae_pretrain_vit_huge_p14to16.pth"
|
111 |
+
|
112 |
+
model.backbone.net.embed_dim = 1280
|
113 |
+
model.backbone.net.depth = 32
|
114 |
+
model.backbone.net.num_heads = 16
|
115 |
+
model.backbone.net.drop_path_rate = 0.5
|
116 |
+
# 7, 15, 23, 31 for global attention
|
117 |
+
model.backbone.net.window_block_indexes = (
|
118 |
+
list(range(0, 7)) + list(range(8, 15)) + list(range(16, 23)) + list(range(24, 31))
|
119 |
+
)
|
120 |
+
|
121 |
+
optimizer.params.lr_factor_func = partial(get_vit_lr_decay_rate, lr_decay_rate=0.9, num_layers=32)
|
122 |
+
optimizer.params.overrides = {}
|
123 |
+
optimizer.params.weight_decay_norm = None
|
124 |
+
|
125 |
+
train.max_iter = train.max_iter * 3 // 4 # 100ep -> 75ep
|
126 |
+
lr_multiplier.scheduler.milestones = [
|
127 |
+
milestone * 3 // 4 for milestone in lr_multiplier.scheduler.milestones
|
128 |
+
]
|
129 |
+
lr_multiplier.scheduler.num_updates = train.max_iter
|
hamer/configs/datasets_tar.yaml
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FREIHAND-TRAIN:
|
2 |
+
TYPE: ImageDataset
|
3 |
+
URLS: hamer_training_data/dataset_tars/freihand-train/{000000..000130}.tar
|
4 |
+
epoch_size: 130_240
|
5 |
+
INTERHAND26M-TRAIN:
|
6 |
+
TYPE: ImageDataset
|
7 |
+
URLS: hamer_training_data/dataset_tars/interhand26m-train/{000000..001056}.tar
|
8 |
+
epoch_size: 1_424_632
|
9 |
+
HALPE-TRAIN:
|
10 |
+
TYPE: ImageDataset
|
11 |
+
URLS: hamer_training_data/dataset_tars/halpe-train/{000000..000022}.tar
|
12 |
+
epoch_size: 34_289
|
13 |
+
COCOW-TRAIN:
|
14 |
+
TYPE: ImageDataset
|
15 |
+
URLS: hamer_training_data/dataset_tars/cocow-train/{000000..000036}.tar
|
16 |
+
epoch_size: 78_666
|
17 |
+
MTC-TRAIN:
|
18 |
+
TYPE: ImageDataset
|
19 |
+
URLS: hamer_training_data/dataset_tars/mtc-train/{000000..000306}.tar
|
20 |
+
epoch_size: 363_947
|
21 |
+
RHD-TRAIN:
|
22 |
+
TYPE: ImageDataset
|
23 |
+
URLS: hamer_training_data/dataset_tars/rhd-train/{000000..000041}.tar
|
24 |
+
epoch_size: 61_705
|
25 |
+
MPIINZSL-TRAIN:
|
26 |
+
TYPE: ImageDataset
|
27 |
+
URLS: hamer_training_data/dataset_tars/mpiinzsl-train/{000000..000015}.tar
|
28 |
+
epoch_size: 15_184
|
29 |
+
HO3D-TRAIN:
|
30 |
+
TYPE: ImageDataset
|
31 |
+
URLS: hamer_training_data/dataset_tars/ho3d-train/{000000..000083}.tar
|
32 |
+
epoch_size: 83_325
|
33 |
+
H2O3D-TRAIN:
|
34 |
+
TYPE: ImageDataset
|
35 |
+
URLS: hamer_training_data/dataset_tars/h2o3d-train/{000000..000060}.tar
|
36 |
+
epoch_size: 121_996
|
37 |
+
DEX-TRAIN:
|
38 |
+
TYPE: ImageDataset
|
39 |
+
URLS: hamer_training_data/dataset_tars/dex-train/{000000..000406}.tar
|
40 |
+
epoch_size: 406_888
|
41 |
+
FREIHAND-MOCAP:
|
42 |
+
DATASET_FILE: hamer_training_data/freihand_mocap.npz
|
hamer/configs_hydra/data/mix_all.yaml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
defaults:
|
3 |
+
- /data_filtering: low1
|
4 |
+
|
5 |
+
DATASETS:
|
6 |
+
TRAIN:
|
7 |
+
FREIHAND-TRAIN:
|
8 |
+
WEIGHT: 0.25
|
9 |
+
INTERHAND26M-TRAIN:
|
10 |
+
WEIGHT: 0.25
|
11 |
+
MTC-TRAIN:
|
12 |
+
WEIGHT: 0.1
|
13 |
+
RHD-TRAIN:
|
14 |
+
WEIGHT: 0.05
|
15 |
+
COCOW-TRAIN:
|
16 |
+
WEIGHT: 0.1
|
17 |
+
HALPE-TRAIN:
|
18 |
+
WEIGHT: 0.05
|
19 |
+
MPIINZSL-TRAIN:
|
20 |
+
WEIGHT: 0.05
|
21 |
+
HO3D-TRAIN:
|
22 |
+
WEIGHT: 0.05
|
23 |
+
H2O3D-TRAIN:
|
24 |
+
WEIGHT: 0.05
|
25 |
+
DEX-TRAIN:
|
26 |
+
WEIGHT: 0.05
|
27 |
+
VAL:
|
28 |
+
FREIHAND-TRAIN:
|
29 |
+
WEIGHT: 1.0
|
30 |
+
|
31 |
+
MOCAP: FREIHAND-MOCAP
|
hamer/configs_hydra/data_filtering/low1.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
DATASETS:
|
4 |
+
# Data filtering during training
|
5 |
+
SUPPRESS_KP_CONF_THRESH: 0.3
|
6 |
+
FILTER_NUM_KP: 4
|
7 |
+
FILTER_NUM_KP_THRESH: 0.0
|
8 |
+
FILTER_REPROJ_THRESH: 31000
|
9 |
+
|
10 |
+
SUPPRESS_BETAS_THRESH: 3.0
|
11 |
+
SUPPRESS_BAD_POSES: False
|
12 |
+
POSES_BETAS_SIMULTANEOUS: True
|
13 |
+
FILTER_NO_POSES: False # If True, filters images that don't have poses
|
hamer/configs_hydra/experiment/default.yaml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
MANO:
|
4 |
+
DATA_DIR: ${oc.env:HOME}/.cache/4DHumans/data/
|
5 |
+
MODEL_PATH: ${MANO.DATA_DIR}/mano
|
6 |
+
GENDER: neutral
|
7 |
+
NUM_HAND_JOINTS: 15
|
8 |
+
MEAN_PARAMS: ${MANO.DATA_DIR}/mano_mean_params.npz
|
9 |
+
CREATE_BODY_POSE: FALSE
|
10 |
+
|
11 |
+
EXTRA:
|
12 |
+
FOCAL_LENGTH: 5000
|
13 |
+
NUM_LOG_IMAGES: 4
|
14 |
+
NUM_LOG_SAMPLES_PER_IMAGE: 8
|
15 |
+
PELVIS_IND: 0
|
16 |
+
|
17 |
+
DATASETS:
|
18 |
+
BETAS_REG: True
|
19 |
+
CONFIG:
|
20 |
+
SCALE_FACTOR: 0.3
|
21 |
+
ROT_FACTOR: 30
|
22 |
+
TRANS_FACTOR: 0.02
|
23 |
+
COLOR_SCALE: 0.2
|
24 |
+
ROT_AUG_RATE: 0.6
|
25 |
+
TRANS_AUG_RATE: 0.5
|
26 |
+
DO_FLIP: False
|
27 |
+
FLIP_AUG_RATE: 0.0
|
28 |
+
EXTREME_CROP_AUG_RATE: 0.0
|
29 |
+
EXTREME_CROP_AUG_LEVEL: 1
|
hamer/configs_hydra/experiment/hamer_vit_transformer.yaml
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- default.yaml
|
5 |
+
|
6 |
+
GENERAL:
|
7 |
+
TOTAL_STEPS: 1_000_000
|
8 |
+
LOG_STEPS: 1000
|
9 |
+
VAL_STEPS: 1000
|
10 |
+
CHECKPOINT_STEPS: 1000
|
11 |
+
CHECKPOINT_SAVE_TOP_K: 1
|
12 |
+
NUM_WORKERS: 25
|
13 |
+
PREFETCH_FACTOR: 2
|
14 |
+
|
15 |
+
TRAIN:
|
16 |
+
LR: 1e-5
|
17 |
+
WEIGHT_DECAY: 1e-4
|
18 |
+
BATCH_SIZE: 8
|
19 |
+
LOSS_REDUCTION: mean
|
20 |
+
NUM_TRAIN_SAMPLES: 2
|
21 |
+
NUM_TEST_SAMPLES: 64
|
22 |
+
POSE_2D_NOISE_RATIO: 0.01
|
23 |
+
SMPL_PARAM_NOISE_RATIO: 0.005
|
24 |
+
|
25 |
+
MODEL:
|
26 |
+
IMAGE_SIZE: 256
|
27 |
+
IMAGE_MEAN: [0.485, 0.456, 0.406]
|
28 |
+
IMAGE_STD: [0.229, 0.224, 0.225]
|
29 |
+
BACKBONE:
|
30 |
+
TYPE: vit
|
31 |
+
PRETRAINED_WEIGHTS: hamer_training_data/vitpose_backbone.pth
|
32 |
+
MANO_HEAD:
|
33 |
+
TYPE: transformer_decoder
|
34 |
+
IN_CHANNELS: 2048
|
35 |
+
TRANSFORMER_DECODER:
|
36 |
+
depth: 6
|
37 |
+
heads: 8
|
38 |
+
mlp_dim: 1024
|
39 |
+
dim_head: 64
|
40 |
+
dropout: 0.0
|
41 |
+
emb_dropout: 0.0
|
42 |
+
norm: layer
|
43 |
+
context_dim: 1280 # from vitpose-H
|
44 |
+
|
45 |
+
LOSS_WEIGHTS:
|
46 |
+
KEYPOINTS_3D: 0.05
|
47 |
+
KEYPOINTS_2D: 0.01
|
48 |
+
GLOBAL_ORIENT: 0.001
|
49 |
+
HAND_POSE: 0.001
|
50 |
+
BETAS: 0.0005
|
51 |
+
ADVERSARIAL: 0.0005
|
hamer/configs_hydra/extras/default.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# disable python warnings if they annoy you
|
2 |
+
ignore_warnings: False
|
3 |
+
|
4 |
+
# ask user for tags if none are provided in the config
|
5 |
+
enforce_tags: True
|
6 |
+
|
7 |
+
# pretty print config tree at the start of the run using Rich library
|
8 |
+
print_config: True
|
hamer/configs_hydra/hydra/default.yaml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
# https://hydra.cc/docs/configure_hydra/intro/
|
3 |
+
|
4 |
+
# enable color logging
|
5 |
+
defaults:
|
6 |
+
- override /hydra/hydra_logging: colorlog
|
7 |
+
- override /hydra/job_logging: colorlog
|
8 |
+
|
9 |
+
# exp_name: ovrd_${hydra:job.override_dirname}
|
10 |
+
exp_name: ${now:%Y-%m-%d}_${now:%H-%M-%S}
|
11 |
+
|
12 |
+
hydra:
|
13 |
+
run:
|
14 |
+
dir: ${paths.log_dir}/${task_name}/runs/${exp_name}
|
15 |
+
sweep:
|
16 |
+
dir: ${paths.log_dir}/${task_name}/multiruns/${exp_name}
|
17 |
+
subdir: ${hydra.job.num}
|
18 |
+
job:
|
19 |
+
config:
|
20 |
+
override_dirname:
|
21 |
+
exclude_keys:
|
22 |
+
- trainer
|
23 |
+
- trainer.devices
|
24 |
+
- trainer.num_nodes
|
25 |
+
- callbacks
|
26 |
+
- debug
|
hamer/configs_hydra/launcher/local.yaml
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /hydra/launcher: submitit_local
|
5 |
+
|
6 |
+
hydra:
|
7 |
+
launcher:
|
8 |
+
timeout_min: 10_080 # 7 days
|
9 |
+
nodes: 1
|
10 |
+
tasks_per_node: ${trainer.devices}
|
11 |
+
cpus_per_task: 6
|
12 |
+
gpus_per_node: ${trainer.devices}
|
13 |
+
name: hamer
|
hamer/configs_hydra/launcher/slurm.yaml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
defaults:
|
4 |
+
- override /hydra/launcher: submitit_slurm
|
5 |
+
|
6 |
+
hydra:
|
7 |
+
launcher:
|
8 |
+
timeout_min: 10_080 # 7 days
|
9 |
+
max_num_timeout: 3
|
10 |
+
partition: g40
|
11 |
+
qos: idle
|
12 |
+
nodes: 1
|
13 |
+
tasks_per_node: ${trainer.devices}
|
14 |
+
gpus_per_task: null
|
15 |
+
cpus_per_task: 12
|
16 |
+
gpus_per_node: ${trainer.devices}
|
17 |
+
cpus_per_gpu: null
|
18 |
+
comment: laion
|
19 |
+
name: hamer
|
20 |
+
setup:
|
21 |
+
- module load cuda openmpi libfabric-aws
|
22 |
+
- export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
|
hamer/configs_hydra/paths/default.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# path to root directory
|
2 |
+
# this requires PROJECT_ROOT environment variable to exist
|
3 |
+
# PROJECT_ROOT is inferred and set by pyrootutils package in `train.py` and `eval.py`
|
4 |
+
root_dir: ${oc.env:PROJECT_ROOT}
|
5 |
+
|
6 |
+
# path to data directory
|
7 |
+
data_dir: ${paths.root_dir}/data/
|
8 |
+
|
9 |
+
# path to logging directory
|
10 |
+
log_dir: logs/
|
11 |
+
|
12 |
+
# path to output directory, created dynamically by hydra
|
13 |
+
# path generation pattern is specified in `configs/hydra/default.yaml`
|
14 |
+
# use it to store all files generated during the run, like ckpts and metrics
|
15 |
+
output_dir: ${hydra:runtime.output_dir}
|
16 |
+
|
17 |
+
# path to working directory
|
18 |
+
work_dir: ${hydra:runtime.cwd}
|
hamer/configs_hydra/train.yaml
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# @package _global_
|
2 |
+
|
3 |
+
# specify here default configuration
|
4 |
+
# order of defaults determines the order in which configs override each other
|
5 |
+
defaults:
|
6 |
+
- _self_
|
7 |
+
- data: mix_all.yaml
|
8 |
+
- trainer: ddp.yaml
|
9 |
+
- paths: default.yaml
|
10 |
+
- extras: default.yaml
|
11 |
+
- hydra: default.yaml
|
12 |
+
|
13 |
+
# experiment configs allow for version control of specific hyperparameters
|
14 |
+
# e.g. best hyperparameters for given model and datamodule
|
15 |
+
- experiment: null
|
16 |
+
- texture_exp: null
|
17 |
+
|
18 |
+
# optional local config for machine/user specific settings
|
19 |
+
# it's optional since it doesn't need to exist and is excluded from version control
|
20 |
+
- optional launcher: local.yaml
|
21 |
+
# - optional launcher: slurm.yaml
|
22 |
+
|
23 |
+
# debugging config (enable through command line, e.g. `python train.py debug=default)
|
24 |
+
- debug: null
|
25 |
+
|
26 |
+
# task name, determines output directory path
|
27 |
+
task_name: "train"
|
28 |
+
|
29 |
+
# tags to help you identify your experiments
|
30 |
+
# you can overwrite this in experiment configs
|
31 |
+
# overwrite from command line with `python train.py tags="[first_tag, second_tag]"`
|
32 |
+
# appending lists from command line is currently not supported :(
|
33 |
+
# https://github.com/facebookresearch/hydra/issues/1547
|
34 |
+
tags: ["dev"]
|
35 |
+
|
36 |
+
# set False to skip model training
|
37 |
+
train: True
|
38 |
+
|
39 |
+
# evaluate on test set, using best model weights achieved during training
|
40 |
+
# lightning chooses best weights based on the metric specified in checkpoint callback
|
41 |
+
test: False
|
42 |
+
|
43 |
+
# simply provide checkpoint path to resume training
|
44 |
+
ckpt_path: null
|
45 |
+
|
46 |
+
# seed for random number generators in pytorch, numpy and python.random
|
47 |
+
seed: null
|
hamer/configs_hydra/trainer/cpu.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- default.yaml
|
3 |
+
- default_hamer.yaml
|
4 |
+
|
5 |
+
accelerator: cpu
|
6 |
+
devices: 1
|
hamer/configs_hydra/trainer/ddp.yaml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- default.yaml
|
3 |
+
- default_hamer.yaml
|
4 |
+
|
5 |
+
# use "ddp_spawn" instead of "ddp",
|
6 |
+
# it's slower but normal "ddp" currently doesn't work ideally with hydra
|
7 |
+
# https://github.com/facebookresearch/hydra/issues/2070
|
8 |
+
# https://pytorch-lightning.readthedocs.io/en/latest/accelerators/gpu_intermediate.html#distributed-data-parallel-spawn
|
9 |
+
strategy: ddp
|
10 |
+
|
11 |
+
accelerator: gpu
|
12 |
+
devices: 8
|
13 |
+
num_nodes: 1
|
14 |
+
sync_batchnorm: True
|
hamer/configs_hydra/trainer/default.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_target_: pytorch_lightning.Trainer
|
2 |
+
|
3 |
+
default_root_dir: ${paths.output_dir}
|
4 |
+
|
5 |
+
accelerator: cpu
|
6 |
+
devices: 1
|
7 |
+
|
8 |
+
# set True to to ensure deterministic results
|
9 |
+
# makes training slower but gives more reproducibility than just setting seeds
|
10 |
+
deterministic: False
|
hamer/configs_hydra/trainer/default_hamer.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_sanity_val_steps: 0
|
2 |
+
log_every_n_steps: ${GENERAL.LOG_STEPS}
|
3 |
+
val_check_interval: ${GENERAL.VAL_STEPS}
|
4 |
+
precision: 16
|
5 |
+
max_steps: ${GENERAL.TOTAL_STEPS}
|
6 |
+
# move_metrics_to_cpu: True
|
7 |
+
limit_val_batches: 1
|
8 |
+
# track_grad_norm: -1
|
hamer/configs_hydra/trainer/gpu.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- default.yaml
|
3 |
+
- default_hamer.yaml
|
4 |
+
|
5 |
+
accelerator: gpu
|
6 |
+
devices: 1
|
hamer/configs_hydra/trainer/mps.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
defaults:
|
2 |
+
- default.yaml
|
3 |
+
- default_hamer.yaml
|
4 |
+
|
5 |
+
accelerator: mps
|
6 |
+
devices: 1
|
hamer/datasets/__init__.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import pytorch_lightning as pl
|
6 |
+
from yacs.config import CfgNode
|
7 |
+
|
8 |
+
from ..configs import to_lower
|
9 |
+
from .dataset import Dataset
|
10 |
+
|
11 |
+
class HAMERDataModule(pl.LightningDataModule):
|
12 |
+
|
13 |
+
def __init__(self, cfg: CfgNode, dataset_cfg: CfgNode) -> None:
|
14 |
+
"""
|
15 |
+
Initialize LightningDataModule for HAMER training
|
16 |
+
Args:
|
17 |
+
cfg (CfgNode): Config file as a yacs CfgNode containing necessary dataset info.
|
18 |
+
dataset_cfg (CfgNode): Dataset configuration file
|
19 |
+
"""
|
20 |
+
super().__init__()
|
21 |
+
self.cfg = cfg
|
22 |
+
self.dataset_cfg = dataset_cfg
|
23 |
+
self.train_dataset = None
|
24 |
+
self.val_dataset = None
|
25 |
+
self.test_dataset = None
|
26 |
+
self.mocap_dataset = None
|
27 |
+
|
28 |
+
def setup(self, stage: Optional[str] = None) -> None:
|
29 |
+
"""
|
30 |
+
Load datasets necessary for training
|
31 |
+
Args:
|
32 |
+
cfg (CfgNode): Config file as a yacs CfgNode containing necessary dataset info.
|
33 |
+
"""
|
34 |
+
if self.train_dataset == None:
|
35 |
+
self.train_dataset = MixedWebDataset(self.cfg, self.dataset_cfg, train=True).with_epoch(100_000).shuffle(4000)
|
36 |
+
self.val_dataset = MixedWebDataset(self.cfg, self.dataset_cfg, train=False).shuffle(4000)
|
37 |
+
self.mocap_dataset = MoCapDataset(**to_lower(self.dataset_cfg[self.cfg.DATASETS.MOCAP]))
|
38 |
+
|
39 |
+
def train_dataloader(self) -> Dict:
|
40 |
+
"""
|
41 |
+
Setup training data loader.
|
42 |
+
Returns:
|
43 |
+
Dict: Dictionary containing image and mocap data dataloaders
|
44 |
+
"""
|
45 |
+
train_dataloader = torch.utils.data.DataLoader(self.train_dataset, self.cfg.TRAIN.BATCH_SIZE, drop_last=True, num_workers=self.cfg.GENERAL.NUM_WORKERS, prefetch_factor=self.cfg.GENERAL.PREFETCH_FACTOR)
|
46 |
+
mocap_dataloader = torch.utils.data.DataLoader(self.mocap_dataset, self.cfg.TRAIN.NUM_TRAIN_SAMPLES * self.cfg.TRAIN.BATCH_SIZE, shuffle=True, drop_last=True, num_workers=1)
|
47 |
+
return {'img': train_dataloader, 'mocap': mocap_dataloader}
|
48 |
+
|
49 |
+
def val_dataloader(self) -> torch.utils.data.DataLoader:
|
50 |
+
"""
|
51 |
+
Setup val data loader.
|
52 |
+
Returns:
|
53 |
+
torch.utils.data.DataLoader: Validation dataloader
|
54 |
+
"""
|
55 |
+
val_dataloader = torch.utils.data.DataLoader(self.val_dataset, self.cfg.TRAIN.BATCH_SIZE, drop_last=True, num_workers=self.cfg.GENERAL.NUM_WORKERS)
|
56 |
+
return val_dataloader
|
hamer/datasets/dataset.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file contains the defition of the base Dataset class.
|
3 |
+
"""
|
4 |
+
|
5 |
+
class DatasetRegistration(type):
|
6 |
+
"""
|
7 |
+
Metaclass for registering different datasets
|
8 |
+
"""
|
9 |
+
def __init__(cls, name, bases, nmspc):
|
10 |
+
super().__init__(name, bases, nmspc)
|
11 |
+
if not hasattr(cls, 'registry'):
|
12 |
+
cls.registry = dict()
|
13 |
+
cls.registry[name] = cls
|
14 |
+
|
15 |
+
# Metamethods, called on class objects:
|
16 |
+
def __iter__(cls):
|
17 |
+
return iter(cls.registry)
|
18 |
+
|
19 |
+
def __str__(cls):
|
20 |
+
return str(cls.registry)
|
21 |
+
|
22 |
+
class Dataset(metaclass=DatasetRegistration):
|
23 |
+
"""
|
24 |
+
Base Dataset class
|
25 |
+
"""
|
26 |
+
def __init__(self, *args, **kwargs):
|
27 |
+
pass
|
hamer/datasets/image_dataset.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from typing import List
|
6 |
+
from yacs.config import CfgNode
|
7 |
+
import braceexpand
|
8 |
+
import cv2
|
9 |
+
|
10 |
+
from .dataset import Dataset
|
11 |
+
from .utils import get_example, expand_to_aspect_ratio
|
12 |
+
|
13 |
+
def expand(s):
|
14 |
+
return os.path.expanduser(os.path.expandvars(s))
|
15 |
+
def expand_urls(urls: str|List[str]):
|
16 |
+
if isinstance(urls, str):
|
17 |
+
urls = [urls]
|
18 |
+
urls = [u for url in urls for u in braceexpand.braceexpand(expand(url))]
|
19 |
+
return urls
|
20 |
+
|
21 |
+
FLIP_KEYPOINT_PERMUTATION = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
|
22 |
+
|
23 |
+
DEFAULT_MEAN = 255. * np.array([0.485, 0.456, 0.406])
|
24 |
+
DEFAULT_STD = 255. * np.array([0.229, 0.224, 0.225])
|
25 |
+
DEFAULT_IMG_SIZE = 256
|
26 |
+
|
27 |
+
class ImageDataset(Dataset):
|
28 |
+
|
29 |
+
@staticmethod
|
30 |
+
def load_tars_as_webdataset(cfg: CfgNode, urls: str|List[str], train: bool,
|
31 |
+
resampled=False,
|
32 |
+
epoch_size=None,
|
33 |
+
cache_dir=None,
|
34 |
+
**kwargs) -> Dataset:
|
35 |
+
"""
|
36 |
+
Loads the dataset from a webdataset tar file.
|
37 |
+
"""
|
38 |
+
|
39 |
+
IMG_SIZE = cfg.MODEL.IMAGE_SIZE
|
40 |
+
BBOX_SHAPE = cfg.MODEL.get('BBOX_SHAPE', None)
|
41 |
+
MEAN = 255. * np.array(cfg.MODEL.IMAGE_MEAN)
|
42 |
+
STD = 255. * np.array(cfg.MODEL.IMAGE_STD)
|
43 |
+
|
44 |
+
def split_data(source):
|
45 |
+
for item in source:
|
46 |
+
datas = item['data.pyd']
|
47 |
+
for data in datas:
|
48 |
+
if 'detection.npz' in item:
|
49 |
+
det_idx = data['extra_info']['detection_npz_idx']
|
50 |
+
mask = item['detection.npz']['masks'][det_idx]
|
51 |
+
else:
|
52 |
+
mask = np.ones_like(item['jpg'][:,:,0], dtype=bool)
|
53 |
+
yield {
|
54 |
+
'__key__': item['__key__'],
|
55 |
+
'jpg': item['jpg'],
|
56 |
+
'data.pyd': data,
|
57 |
+
'mask': mask,
|
58 |
+
}
|
59 |
+
|
60 |
+
def suppress_bad_kps(item, thresh=0.0):
|
61 |
+
if thresh > 0:
|
62 |
+
kp2d = item['data.pyd']['keypoints_2d']
|
63 |
+
kp2d_conf = np.where(kp2d[:, 2] < thresh, 0.0, kp2d[:, 2])
|
64 |
+
item['data.pyd']['keypoints_2d'] = np.concatenate([kp2d[:,:2], kp2d_conf[:,None]], axis=1)
|
65 |
+
return item
|
66 |
+
|
67 |
+
def filter_numkp(item, numkp=4, thresh=0.0):
|
68 |
+
kp_conf = item['data.pyd']['keypoints_2d'][:, 2]
|
69 |
+
return (kp_conf > thresh).sum() > numkp
|
70 |
+
|
71 |
+
def filter_reproj_error(item, thresh=10**4.5):
|
72 |
+
losses = item['data.pyd'].get('extra_info', {}).get('fitting_loss', np.array({})).item()
|
73 |
+
reproj_loss = losses.get('reprojection_loss', None)
|
74 |
+
return reproj_loss is None or reproj_loss < thresh
|
75 |
+
|
76 |
+
def filter_bbox_size(item, thresh=1):
|
77 |
+
bbox_size_min = item['data.pyd']['scale'].min().item() * 200.
|
78 |
+
return bbox_size_min > thresh
|
79 |
+
|
80 |
+
def filter_no_poses(item):
|
81 |
+
return (item['data.pyd']['has_hand_pose'] > 0)
|
82 |
+
|
83 |
+
def supress_bad_betas(item, thresh=3):
|
84 |
+
has_betas = item['data.pyd']['has_betas']
|
85 |
+
if thresh > 0 and has_betas:
|
86 |
+
betas_abs = np.abs(item['data.pyd']['betas'])
|
87 |
+
if (betas_abs > thresh).any():
|
88 |
+
item['data.pyd']['has_betas'] = False
|
89 |
+
return item
|
90 |
+
|
91 |
+
def supress_bad_poses(item):
|
92 |
+
has_hand_pose = item['data.pyd']['has_hand_pose']
|
93 |
+
if has_hand_pose:
|
94 |
+
hand_pose = item['data.pyd']['hand_pose']
|
95 |
+
pose_is_probable = poses_check_probable(torch.from_numpy(hand_pose)[None, 3:], amass_poses_hist100_smooth).item()
|
96 |
+
if not pose_is_probable:
|
97 |
+
item['data.pyd']['has_hand_pose'] = False
|
98 |
+
return item
|
99 |
+
|
100 |
+
def poses_betas_simultaneous(item):
|
101 |
+
# We either have both hand_pose and betas, or neither
|
102 |
+
has_betas = item['data.pyd']['has_betas']
|
103 |
+
has_hand_pose = item['data.pyd']['has_hand_pose']
|
104 |
+
item['data.pyd']['has_betas'] = item['data.pyd']['has_hand_pose'] = np.array(float((has_hand_pose>0) and (has_betas>0)))
|
105 |
+
return item
|
106 |
+
|
107 |
+
def set_betas_for_reg(item):
|
108 |
+
# Always have betas set to true
|
109 |
+
has_betas = item['data.pyd']['has_betas']
|
110 |
+
betas = item['data.pyd']['betas']
|
111 |
+
|
112 |
+
if not (has_betas>0):
|
113 |
+
item['data.pyd']['has_betas'] = np.array(float((True)))
|
114 |
+
item['data.pyd']['betas'] = betas * 0
|
115 |
+
return item
|
116 |
+
|
117 |
+
# Load the dataset
|
118 |
+
if epoch_size is not None:
|
119 |
+
resampled = True
|
120 |
+
#corrupt_filter = lambda sample: (sample['__key__'] not in CORRUPT_KEYS)
|
121 |
+
import webdataset as wds
|
122 |
+
dataset = wds.WebDataset(expand_urls(urls),
|
123 |
+
nodesplitter=wds.split_by_node,
|
124 |
+
shardshuffle=True,
|
125 |
+
resampled=resampled,
|
126 |
+
cache_dir=cache_dir,
|
127 |
+
) #.select(corrupt_filter)
|
128 |
+
if train:
|
129 |
+
dataset = dataset.shuffle(100)
|
130 |
+
dataset = dataset.decode('rgb8').rename(jpg='jpg;jpeg;png')
|
131 |
+
|
132 |
+
# Process the dataset
|
133 |
+
dataset = dataset.compose(split_data)
|
134 |
+
|
135 |
+
# Filter/clean the dataset
|
136 |
+
SUPPRESS_KP_CONF_THRESH = cfg.DATASETS.get('SUPPRESS_KP_CONF_THRESH', 0.0)
|
137 |
+
SUPPRESS_BETAS_THRESH = cfg.DATASETS.get('SUPPRESS_BETAS_THRESH', 0.0)
|
138 |
+
SUPPRESS_BAD_POSES = cfg.DATASETS.get('SUPPRESS_BAD_POSES', False)
|
139 |
+
POSES_BETAS_SIMULTANEOUS = cfg.DATASETS.get('POSES_BETAS_SIMULTANEOUS', False)
|
140 |
+
BETAS_REG = cfg.DATASETS.get('BETAS_REG', False)
|
141 |
+
FILTER_NO_POSES = cfg.DATASETS.get('FILTER_NO_POSES', False)
|
142 |
+
FILTER_NUM_KP = cfg.DATASETS.get('FILTER_NUM_KP', 4)
|
143 |
+
FILTER_NUM_KP_THRESH = cfg.DATASETS.get('FILTER_NUM_KP_THRESH', 0.0)
|
144 |
+
FILTER_REPROJ_THRESH = cfg.DATASETS.get('FILTER_REPROJ_THRESH', 0.0)
|
145 |
+
FILTER_MIN_BBOX_SIZE = cfg.DATASETS.get('FILTER_MIN_BBOX_SIZE', 0.0)
|
146 |
+
if SUPPRESS_KP_CONF_THRESH > 0:
|
147 |
+
dataset = dataset.map(lambda x: suppress_bad_kps(x, thresh=SUPPRESS_KP_CONF_THRESH))
|
148 |
+
if SUPPRESS_BETAS_THRESH > 0:
|
149 |
+
dataset = dataset.map(lambda x: supress_bad_betas(x, thresh=SUPPRESS_BETAS_THRESH))
|
150 |
+
if SUPPRESS_BAD_POSES:
|
151 |
+
dataset = dataset.map(lambda x: supress_bad_poses(x))
|
152 |
+
if POSES_BETAS_SIMULTANEOUS:
|
153 |
+
dataset = dataset.map(lambda x: poses_betas_simultaneous(x))
|
154 |
+
if FILTER_NO_POSES:
|
155 |
+
dataset = dataset.select(lambda x: filter_no_poses(x))
|
156 |
+
if FILTER_NUM_KP > 0:
|
157 |
+
dataset = dataset.select(lambda x: filter_numkp(x, numkp=FILTER_NUM_KP, thresh=FILTER_NUM_KP_THRESH))
|
158 |
+
if FILTER_REPROJ_THRESH > 0:
|
159 |
+
dataset = dataset.select(lambda x: filter_reproj_error(x, thresh=FILTER_REPROJ_THRESH))
|
160 |
+
if FILTER_MIN_BBOX_SIZE > 0:
|
161 |
+
dataset = dataset.select(lambda x: filter_bbox_size(x, thresh=FILTER_MIN_BBOX_SIZE))
|
162 |
+
if BETAS_REG:
|
163 |
+
dataset = dataset.map(lambda x: set_betas_for_reg(x)) # NOTE: Must be at the end
|
164 |
+
|
165 |
+
use_skimage_antialias = cfg.DATASETS.get('USE_SKIMAGE_ANTIALIAS', False)
|
166 |
+
border_mode = {
|
167 |
+
'constant': cv2.BORDER_CONSTANT,
|
168 |
+
'replicate': cv2.BORDER_REPLICATE,
|
169 |
+
}[cfg.DATASETS.get('BORDER_MODE', 'constant')]
|
170 |
+
|
171 |
+
# Process the dataset further
|
172 |
+
dataset = dataset.map(lambda x: ImageDataset.process_webdataset_tar_item(x, train,
|
173 |
+
augm_config=cfg.DATASETS.CONFIG,
|
174 |
+
MEAN=MEAN, STD=STD, IMG_SIZE=IMG_SIZE,
|
175 |
+
BBOX_SHAPE=BBOX_SHAPE,
|
176 |
+
use_skimage_antialias=use_skimage_antialias,
|
177 |
+
border_mode=border_mode,
|
178 |
+
))
|
179 |
+
if epoch_size is not None:
|
180 |
+
dataset = dataset.with_epoch(epoch_size)
|
181 |
+
|
182 |
+
return dataset
|
183 |
+
|
184 |
+
@staticmethod
|
185 |
+
def process_webdataset_tar_item(item, train,
|
186 |
+
augm_config=None,
|
187 |
+
MEAN=DEFAULT_MEAN,
|
188 |
+
STD=DEFAULT_STD,
|
189 |
+
IMG_SIZE=DEFAULT_IMG_SIZE,
|
190 |
+
BBOX_SHAPE=None,
|
191 |
+
use_skimage_antialias=False,
|
192 |
+
border_mode=cv2.BORDER_CONSTANT,
|
193 |
+
):
|
194 |
+
# Read data from item
|
195 |
+
key = item['__key__']
|
196 |
+
image = item['jpg']
|
197 |
+
data = item['data.pyd']
|
198 |
+
mask = item['mask']
|
199 |
+
|
200 |
+
keypoints_2d = data['keypoints_2d']
|
201 |
+
keypoints_3d = data['keypoints_3d']
|
202 |
+
center = data['center']
|
203 |
+
scale = data['scale']
|
204 |
+
hand_pose = data['hand_pose']
|
205 |
+
betas = data['betas']
|
206 |
+
right = data['right']
|
207 |
+
#right = True
|
208 |
+
has_hand_pose = data['has_hand_pose']
|
209 |
+
has_betas = data['has_betas']
|
210 |
+
# image_file = data['image_file']
|
211 |
+
|
212 |
+
# Process data
|
213 |
+
orig_keypoints_2d = keypoints_2d.copy()
|
214 |
+
center_x = center[0]
|
215 |
+
center_y = center[1]
|
216 |
+
bbox_size = expand_to_aspect_ratio(scale*200, target_aspect_ratio=BBOX_SHAPE).max()
|
217 |
+
if bbox_size < 1:
|
218 |
+
breakpoint()
|
219 |
+
|
220 |
+
|
221 |
+
mano_params = {'global_orient': hand_pose[:3],
|
222 |
+
'hand_pose': hand_pose[3:],
|
223 |
+
'betas': betas
|
224 |
+
}
|
225 |
+
|
226 |
+
has_mano_params = {'global_orient': has_hand_pose,
|
227 |
+
'hand_pose': has_hand_pose,
|
228 |
+
'betas': has_betas
|
229 |
+
}
|
230 |
+
|
231 |
+
mano_params_is_axis_angle = {'global_orient': True,
|
232 |
+
'hand_pose': True,
|
233 |
+
'betas': False
|
234 |
+
}
|
235 |
+
|
236 |
+
augm_config = copy.deepcopy(augm_config)
|
237 |
+
# Crop image and (possibly) perform data augmentation
|
238 |
+
img_rgba = np.concatenate([image, mask.astype(np.uint8)[:,:,None]*255], axis=2)
|
239 |
+
img_patch_rgba, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size, trans = get_example(img_rgba,
|
240 |
+
center_x, center_y,
|
241 |
+
bbox_size, bbox_size,
|
242 |
+
keypoints_2d, keypoints_3d,
|
243 |
+
mano_params, has_mano_params,
|
244 |
+
FLIP_KEYPOINT_PERMUTATION,
|
245 |
+
IMG_SIZE, IMG_SIZE,
|
246 |
+
MEAN, STD, train, right, augm_config,
|
247 |
+
is_bgr=False, return_trans=True,
|
248 |
+
use_skimage_antialias=use_skimage_antialias,
|
249 |
+
border_mode=border_mode,
|
250 |
+
)
|
251 |
+
img_patch = img_patch_rgba[:3,:,:]
|
252 |
+
mask_patch = (img_patch_rgba[3,:,:] / 255.0).clip(0,1)
|
253 |
+
if (mask_patch < 0.5).all():
|
254 |
+
mask_patch = np.ones_like(mask_patch)
|
255 |
+
|
256 |
+
item = {}
|
257 |
+
|
258 |
+
item['img'] = img_patch
|
259 |
+
item['mask'] = mask_patch
|
260 |
+
# item['img_og'] = image
|
261 |
+
# item['mask_og'] = mask
|
262 |
+
item['keypoints_2d'] = keypoints_2d.astype(np.float32)
|
263 |
+
item['keypoints_3d'] = keypoints_3d.astype(np.float32)
|
264 |
+
item['orig_keypoints_2d'] = orig_keypoints_2d
|
265 |
+
item['box_center'] = center.copy()
|
266 |
+
item['box_size'] = bbox_size
|
267 |
+
item['img_size'] = 1.0 * img_size[::-1].copy()
|
268 |
+
item['mano_params'] = mano_params
|
269 |
+
item['has_mano_params'] = has_mano_params
|
270 |
+
item['mano_params_is_axis_angle'] = mano_params_is_axis_angle
|
271 |
+
item['_scale'] = scale
|
272 |
+
item['_trans'] = trans
|
273 |
+
item['imgname'] = key
|
274 |
+
# item['idx'] = idx
|
275 |
+
return item
|
hamer/datasets/json_dataset.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import glob
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from typing import Any, Dict, List
|
8 |
+
from yacs.config import CfgNode
|
9 |
+
import braceexpand
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
from .dataset import Dataset
|
13 |
+
from .utils import get_example, expand_to_aspect_ratio
|
14 |
+
from .smplh_prob_filter import poses_check_probable, load_amass_hist_smooth
|
15 |
+
|
16 |
+
def expand(s):
|
17 |
+
return os.path.expanduser(os.path.expandvars(s))
|
18 |
+
def expand_urls(urls: str|List[str]):
|
19 |
+
if isinstance(urls, str):
|
20 |
+
urls = [urls]
|
21 |
+
urls = [u for url in urls for u in braceexpand.braceexpand(expand(url))]
|
22 |
+
return urls
|
23 |
+
|
24 |
+
AIC_TRAIN_CORRUPT_KEYS = {
|
25 |
+
'0a047f0124ae48f8eee15a9506ce1449ee1ba669',
|
26 |
+
'1a703aa174450c02fbc9cfbf578a5435ef403689',
|
27 |
+
'0394e6dc4df78042929b891dbc24f0fd7ffb6b6d',
|
28 |
+
'5c032b9626e410441544c7669123ecc4ae077058',
|
29 |
+
'ca018a7b4c5f53494006ebeeff9b4c0917a55f07',
|
30 |
+
'4a77adb695bef75a5d34c04d589baf646fe2ba35',
|
31 |
+
'a0689017b1065c664daef4ae2d14ea03d543217e',
|
32 |
+
'39596a45cbd21bed4a5f9c2342505532f8ec5cbb',
|
33 |
+
'3d33283b40610d87db660b62982f797d50a7366b',
|
34 |
+
}
|
35 |
+
CORRUPT_KEYS = {
|
36 |
+
*{f'aic-train/{k}' for k in AIC_TRAIN_CORRUPT_KEYS},
|
37 |
+
*{f'aic-train-vitpose/{k}' for k in AIC_TRAIN_CORRUPT_KEYS},
|
38 |
+
}
|
39 |
+
|
40 |
+
FLIP_KEYPOINT_PERMUTATION = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
|
41 |
+
|
42 |
+
DEFAULT_MEAN = 255. * np.array([0.485, 0.456, 0.406])
|
43 |
+
DEFAULT_STD = 255. * np.array([0.229, 0.224, 0.225])
|
44 |
+
DEFAULT_IMG_SIZE = 256
|
45 |
+
|
46 |
+
class JsonDataset(Dataset):
|
47 |
+
|
48 |
+
def __init__(self,
|
49 |
+
cfg: CfgNode,
|
50 |
+
dataset_file: str,
|
51 |
+
img_dir: str,
|
52 |
+
right: bool,
|
53 |
+
train: bool = False,
|
54 |
+
prune: Dict[str, Any] = {},
|
55 |
+
**kwargs):
|
56 |
+
"""
|
57 |
+
Dataset class used for loading images and corresponding annotations.
|
58 |
+
Args:
|
59 |
+
cfg (CfgNode): Model config file.
|
60 |
+
dataset_file (str): Path to npz file containing dataset info.
|
61 |
+
img_dir (str): Path to image folder.
|
62 |
+
train (bool): Whether it is for training or not (enables data augmentation).
|
63 |
+
"""
|
64 |
+
super(JsonDataset, self).__init__()
|
65 |
+
self.train = train
|
66 |
+
self.cfg = cfg
|
67 |
+
|
68 |
+
self.img_size = cfg.MODEL.IMAGE_SIZE
|
69 |
+
self.mean = 255. * np.array(self.cfg.MODEL.IMAGE_MEAN)
|
70 |
+
self.std = 255. * np.array(self.cfg.MODEL.IMAGE_STD)
|
71 |
+
|
72 |
+
self.img_dir = img_dir
|
73 |
+
boxes = np.array(json.load(open(dataset_file, 'rb')))
|
74 |
+
|
75 |
+
self.imgname = glob.glob(os.path.join(self.img_dir,'*.jpg'))
|
76 |
+
self.imgname.sort()
|
77 |
+
|
78 |
+
self.flip_keypoint_permutation = copy.copy(FLIP_KEYPOINT_PERMUTATION)
|
79 |
+
|
80 |
+
num_pose = 3 * (self.cfg.MANO.NUM_HAND_JOINTS + 1)
|
81 |
+
|
82 |
+
# Bounding boxes are assumed to be in the center and scale format
|
83 |
+
boxes = boxes.astype(np.float32)
|
84 |
+
self.center = (boxes[:, 2:4] + boxes[:, 0:2]) / 2.0
|
85 |
+
self.scale = 2 * (boxes[:, 2:4] - boxes[:, 0:2]) / 200.0
|
86 |
+
self.personid = np.arange(len(boxes), dtype=np.int32)
|
87 |
+
if right:
|
88 |
+
self.right = np.ones(len(self.imgname), dtype=np.float32)
|
89 |
+
else:
|
90 |
+
self.right = np.zeros(len(self.imgname), dtype=np.float32)
|
91 |
+
assert self.scale.shape == (len(self.center), 2)
|
92 |
+
|
93 |
+
# Get gt SMPLX parameters, if available
|
94 |
+
try:
|
95 |
+
self.hand_pose = self.data['hand_pose'].astype(np.float32)
|
96 |
+
self.has_hand_pose = self.data['has_hand_pose'].astype(np.float32)
|
97 |
+
except:
|
98 |
+
self.hand_pose = np.zeros((len(self.imgname), num_pose), dtype=np.float32)
|
99 |
+
self.has_hand_pose = np.zeros(len(self.imgname), dtype=np.float32)
|
100 |
+
try:
|
101 |
+
self.betas = self.data['betas'].astype(np.float32)
|
102 |
+
self.has_betas = self.data['has_betas'].astype(np.float32)
|
103 |
+
except:
|
104 |
+
self.betas = np.zeros((len(self.imgname), 10), dtype=np.float32)
|
105 |
+
self.has_betas = np.zeros(len(self.imgname), dtype=np.float32)
|
106 |
+
|
107 |
+
# Try to get 2d keypoints, if available
|
108 |
+
try:
|
109 |
+
hand_keypoints_2d = self.data['hand_keypoints_2d']
|
110 |
+
except:
|
111 |
+
hand_keypoints_2d = np.zeros((len(self.center), 21, 3))
|
112 |
+
## Try to get extra 2d keypoints, if available
|
113 |
+
#try:
|
114 |
+
# extra_keypoints_2d = self.data['extra_keypoints_2d']
|
115 |
+
#except KeyError:
|
116 |
+
# extra_keypoints_2d = np.zeros((len(self.center), 19, 3))
|
117 |
+
|
118 |
+
#self.keypoints_2d = np.concatenate((hand_keypoints_2d, extra_keypoints_2d), axis=1).astype(np.float32)
|
119 |
+
self.keypoints_2d = hand_keypoints_2d
|
120 |
+
|
121 |
+
# Try to get 3d keypoints, if available
|
122 |
+
try:
|
123 |
+
hand_keypoints_3d = self.data['hand_keypoints_3d'].astype(np.float32)
|
124 |
+
except:
|
125 |
+
hand_keypoints_3d = np.zeros((len(self.center), 21, 4), dtype=np.float32)
|
126 |
+
## Try to get extra 3d keypoints, if available
|
127 |
+
#try:
|
128 |
+
# extra_keypoints_3d = self.data['extra_keypoints_3d'].astype(np.float32)
|
129 |
+
#except KeyError:
|
130 |
+
# extra_keypoints_3d = np.zeros((len(self.center), 19, 4), dtype=np.float32)
|
131 |
+
|
132 |
+
self.keypoints_3d = hand_keypoints_3d
|
133 |
+
|
134 |
+
#body_keypoints_3d[:, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], -1] = 0
|
135 |
+
|
136 |
+
#self.keypoints_3d = np.concatenate((body_keypoints_3d, extra_keypoints_3d), axis=1).astype(np.float32)
|
137 |
+
|
138 |
+
def __len__(self) -> int:
|
139 |
+
return len(self.scale)
|
140 |
+
|
141 |
+
def __getitem__(self, idx: int) -> Dict:
|
142 |
+
"""
|
143 |
+
Returns an example from the dataset.
|
144 |
+
"""
|
145 |
+
try:
|
146 |
+
image_file = self.imgname[idx].decode('utf-8')
|
147 |
+
except AttributeError:
|
148 |
+
image_file = self.imgname[idx]
|
149 |
+
keypoints_2d = self.keypoints_2d[idx].copy()
|
150 |
+
keypoints_3d = self.keypoints_3d[idx].copy()
|
151 |
+
|
152 |
+
center = self.center[idx].copy()
|
153 |
+
center_x = center[0]
|
154 |
+
center_y = center[1]
|
155 |
+
scale = self.scale[idx]
|
156 |
+
right = self.right[idx].copy()
|
157 |
+
BBOX_SHAPE = self.cfg.MODEL.get('BBOX_SHAPE', None)
|
158 |
+
#bbox_size = expand_to_aspect_ratio(scale*200, target_aspect_ratio=BBOX_SHAPE).max()
|
159 |
+
bbox_size = ((scale*200).max())
|
160 |
+
bbox_expand_factor = bbox_size / ((scale*200).max())
|
161 |
+
hand_pose = self.hand_pose[idx].copy().astype(np.float32)
|
162 |
+
betas = self.betas[idx].copy().astype(np.float32)
|
163 |
+
|
164 |
+
has_hand_pose = self.has_hand_pose[idx].copy()
|
165 |
+
has_betas = self.has_betas[idx].copy()
|
166 |
+
|
167 |
+
mano_params = {'global_orient': hand_pose[:3],
|
168 |
+
'hand_pose': hand_pose[3:],
|
169 |
+
'betas': betas
|
170 |
+
}
|
171 |
+
|
172 |
+
has_mano_params = {'global_orient': has_hand_pose,
|
173 |
+
'hand_pose': has_hand_pose,
|
174 |
+
'betas': has_betas
|
175 |
+
}
|
176 |
+
|
177 |
+
mano_params_is_axis_angle = {'global_orient': True,
|
178 |
+
'hand_pose': True,
|
179 |
+
'betas': False
|
180 |
+
}
|
181 |
+
|
182 |
+
augm_config = self.cfg.DATASETS.CONFIG
|
183 |
+
# Crop image and (possibly) perform data augmentation
|
184 |
+
img_patch, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size = get_example(image_file,
|
185 |
+
center_x, center_y,
|
186 |
+
bbox_size, bbox_size,
|
187 |
+
keypoints_2d, keypoints_3d,
|
188 |
+
mano_params, has_mano_params,
|
189 |
+
self.flip_keypoint_permutation,
|
190 |
+
self.img_size, self.img_size,
|
191 |
+
self.mean, self.std, self.train, right, augm_config)
|
192 |
+
|
193 |
+
item = {}
|
194 |
+
# These are the keypoints in the original image coordinates (before cropping)
|
195 |
+
orig_keypoints_2d = self.keypoints_2d[idx].copy()
|
196 |
+
|
197 |
+
item['img'] = img_patch
|
198 |
+
item['keypoints_2d'] = keypoints_2d.astype(np.float32)
|
199 |
+
item['keypoints_3d'] = keypoints_3d.astype(np.float32)
|
200 |
+
item['orig_keypoints_2d'] = orig_keypoints_2d
|
201 |
+
item['box_center'] = self.center[idx].copy()
|
202 |
+
item['box_size'] = bbox_size
|
203 |
+
item['bbox_expand_factor'] = bbox_expand_factor
|
204 |
+
item['img_size'] = 1.0 * img_size[::-1].copy()
|
205 |
+
item['mano_params'] = mano_params
|
206 |
+
item['has_mano_params'] = has_mano_params
|
207 |
+
item['mano_params_is_axis_angle'] = mano_params_is_axis_angle
|
208 |
+
item['imgname'] = image_file
|
209 |
+
item['personid'] = int(self.personid[idx])
|
210 |
+
item['idx'] = idx
|
211 |
+
item['_scale'] = scale
|
212 |
+
item['right'] = self.right[idx].copy()
|
213 |
+
return item
|
hamer/datasets/mocap_dataset.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from typing import Dict
|
3 |
+
|
4 |
+
class MoCapDataset:
|
5 |
+
|
6 |
+
def __init__(self, dataset_file: str):
|
7 |
+
"""
|
8 |
+
Dataset class used for loading a dataset of unpaired MANO parameter annotations
|
9 |
+
Args:
|
10 |
+
cfg (CfgNode): Model config file.
|
11 |
+
dataset_file (str): Path to npz file containing dataset info.
|
12 |
+
"""
|
13 |
+
data = np.load(dataset_file)
|
14 |
+
self.pose = data['hand_pose'].astype(np.float32)[:, 3:]
|
15 |
+
self.betas = data['betas'].astype(np.float32)
|
16 |
+
self.length = len(self.pose)
|
17 |
+
|
18 |
+
def __getitem__(self, idx: int) -> Dict:
|
19 |
+
pose = self.pose[idx].copy()
|
20 |
+
betas = self.betas[idx].copy()
|
21 |
+
item = {'hand_pose': pose, 'betas': betas}
|
22 |
+
return item
|
23 |
+
|
24 |
+
def __len__(self) -> int:
|
25 |
+
return self.length
|
hamer/datasets/utils.py
ADDED
@@ -0,0 +1,993 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Parts of the code are taken or adapted from
|
3 |
+
https://github.com/mkocabas/EpipolarPose/blob/master/lib/utils/img_utils.py
|
4 |
+
"""
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
from skimage.transform import rotate, resize
|
8 |
+
from skimage.filters import gaussian
|
9 |
+
import random
|
10 |
+
import cv2
|
11 |
+
from typing import List, Dict, Tuple
|
12 |
+
from yacs.config import CfgNode
|
13 |
+
|
14 |
+
def expand_to_aspect_ratio(input_shape, target_aspect_ratio=None):
|
15 |
+
"""Increase the size of the bounding box to match the target shape."""
|
16 |
+
if target_aspect_ratio is None:
|
17 |
+
return input_shape
|
18 |
+
|
19 |
+
try:
|
20 |
+
w , h = input_shape
|
21 |
+
except (ValueError, TypeError):
|
22 |
+
return input_shape
|
23 |
+
|
24 |
+
w_t, h_t = target_aspect_ratio
|
25 |
+
if h / w < h_t / w_t:
|
26 |
+
h_new = max(w * h_t / w_t, h)
|
27 |
+
w_new = w
|
28 |
+
else:
|
29 |
+
h_new = h
|
30 |
+
w_new = max(h * w_t / h_t, w)
|
31 |
+
if h_new < h or w_new < w:
|
32 |
+
breakpoint()
|
33 |
+
return np.array([w_new, h_new])
|
34 |
+
|
35 |
+
def do_augmentation(aug_config: CfgNode) -> Tuple:
|
36 |
+
"""
|
37 |
+
Compute random augmentation parameters.
|
38 |
+
Args:
|
39 |
+
aug_config (CfgNode): Config containing augmentation parameters.
|
40 |
+
Returns:
|
41 |
+
scale (float): Box rescaling factor.
|
42 |
+
rot (float): Random image rotation.
|
43 |
+
do_flip (bool): Whether to flip image or not.
|
44 |
+
do_extreme_crop (bool): Whether to apply extreme cropping (as proposed in EFT).
|
45 |
+
color_scale (List): Color rescaling factor
|
46 |
+
tx (float): Random translation along the x axis.
|
47 |
+
ty (float): Random translation along the y axis.
|
48 |
+
"""
|
49 |
+
|
50 |
+
tx = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR
|
51 |
+
ty = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.TRANS_FACTOR
|
52 |
+
scale = np.clip(np.random.randn(), -1.0, 1.0) * aug_config.SCALE_FACTOR + 1.0
|
53 |
+
rot = np.clip(np.random.randn(), -2.0,
|
54 |
+
2.0) * aug_config.ROT_FACTOR if random.random() <= aug_config.ROT_AUG_RATE else 0
|
55 |
+
do_flip = aug_config.DO_FLIP and random.random() <= aug_config.FLIP_AUG_RATE
|
56 |
+
do_extreme_crop = random.random() <= aug_config.EXTREME_CROP_AUG_RATE
|
57 |
+
extreme_crop_lvl = aug_config.get('EXTREME_CROP_AUG_LEVEL', 0)
|
58 |
+
# extreme_crop_lvl = 0
|
59 |
+
c_up = 1.0 + aug_config.COLOR_SCALE
|
60 |
+
c_low = 1.0 - aug_config.COLOR_SCALE
|
61 |
+
color_scale = [random.uniform(c_low, c_up), random.uniform(c_low, c_up), random.uniform(c_low, c_up)]
|
62 |
+
return scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty
|
63 |
+
|
64 |
+
def rotate_2d(pt_2d: np.array, rot_rad: float) -> np.array:
|
65 |
+
"""
|
66 |
+
Rotate a 2D point on the x-y plane.
|
67 |
+
Args:
|
68 |
+
pt_2d (np.array): Input 2D point with shape (2,).
|
69 |
+
rot_rad (float): Rotation angle
|
70 |
+
Returns:
|
71 |
+
np.array: Rotated 2D point.
|
72 |
+
"""
|
73 |
+
x = pt_2d[0]
|
74 |
+
y = pt_2d[1]
|
75 |
+
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
76 |
+
xx = x * cs - y * sn
|
77 |
+
yy = x * sn + y * cs
|
78 |
+
return np.array([xx, yy], dtype=np.float32)
|
79 |
+
|
80 |
+
|
81 |
+
def gen_trans_from_patch_cv(c_x: float, c_y: float,
|
82 |
+
src_width: float, src_height: float,
|
83 |
+
dst_width: float, dst_height: float,
|
84 |
+
scale: float, rot: float) -> np.array:
|
85 |
+
"""
|
86 |
+
Create transformation matrix for the bounding box crop.
|
87 |
+
Args:
|
88 |
+
c_x (float): Bounding box center x coordinate in the original image.
|
89 |
+
c_y (float): Bounding box center y coordinate in the original image.
|
90 |
+
src_width (float): Bounding box width.
|
91 |
+
src_height (float): Bounding box height.
|
92 |
+
dst_width (float): Output box width.
|
93 |
+
dst_height (float): Output box height.
|
94 |
+
scale (float): Rescaling factor for the bounding box (augmentation).
|
95 |
+
rot (float): Random rotation applied to the box.
|
96 |
+
Returns:
|
97 |
+
trans (np.array): Target geometric transformation.
|
98 |
+
"""
|
99 |
+
# augment size with scale
|
100 |
+
src_w = src_width * scale
|
101 |
+
src_h = src_height * scale
|
102 |
+
src_center = np.zeros(2)
|
103 |
+
src_center[0] = c_x
|
104 |
+
src_center[1] = c_y
|
105 |
+
# augment rotation
|
106 |
+
rot_rad = np.pi * rot / 180
|
107 |
+
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad)
|
108 |
+
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad)
|
109 |
+
|
110 |
+
dst_w = dst_width
|
111 |
+
dst_h = dst_height
|
112 |
+
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32)
|
113 |
+
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32)
|
114 |
+
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32)
|
115 |
+
|
116 |
+
src = np.zeros((3, 2), dtype=np.float32)
|
117 |
+
src[0, :] = src_center
|
118 |
+
src[1, :] = src_center + src_downdir
|
119 |
+
src[2, :] = src_center + src_rightdir
|
120 |
+
|
121 |
+
dst = np.zeros((3, 2), dtype=np.float32)
|
122 |
+
dst[0, :] = dst_center
|
123 |
+
dst[1, :] = dst_center + dst_downdir
|
124 |
+
dst[2, :] = dst_center + dst_rightdir
|
125 |
+
|
126 |
+
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
|
127 |
+
|
128 |
+
return trans
|
129 |
+
|
130 |
+
|
131 |
+
def trans_point2d(pt_2d: np.array, trans: np.array):
|
132 |
+
"""
|
133 |
+
Transform a 2D point using translation matrix trans.
|
134 |
+
Args:
|
135 |
+
pt_2d (np.array): Input 2D point with shape (2,).
|
136 |
+
trans (np.array): Transformation matrix.
|
137 |
+
Returns:
|
138 |
+
np.array: Transformed 2D point.
|
139 |
+
"""
|
140 |
+
src_pt = np.array([pt_2d[0], pt_2d[1], 1.]).T
|
141 |
+
dst_pt = np.dot(trans, src_pt)
|
142 |
+
return dst_pt[0:2]
|
143 |
+
|
144 |
+
def get_transform(center, scale, res, rot=0):
|
145 |
+
"""Generate transformation matrix."""
|
146 |
+
"""Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py"""
|
147 |
+
h = 200 * scale
|
148 |
+
t = np.zeros((3, 3))
|
149 |
+
t[0, 0] = float(res[1]) / h
|
150 |
+
t[1, 1] = float(res[0]) / h
|
151 |
+
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
|
152 |
+
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
|
153 |
+
t[2, 2] = 1
|
154 |
+
if not rot == 0:
|
155 |
+
rot = -rot # To match direction of rotation from cropping
|
156 |
+
rot_mat = np.zeros((3, 3))
|
157 |
+
rot_rad = rot * np.pi / 180
|
158 |
+
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
|
159 |
+
rot_mat[0, :2] = [cs, -sn]
|
160 |
+
rot_mat[1, :2] = [sn, cs]
|
161 |
+
rot_mat[2, 2] = 1
|
162 |
+
# Need to rotate around center
|
163 |
+
t_mat = np.eye(3)
|
164 |
+
t_mat[0, 2] = -res[1] / 2
|
165 |
+
t_mat[1, 2] = -res[0] / 2
|
166 |
+
t_inv = t_mat.copy()
|
167 |
+
t_inv[:2, 2] *= -1
|
168 |
+
t = np.dot(t_inv, np.dot(rot_mat, np.dot(t_mat, t)))
|
169 |
+
return t
|
170 |
+
|
171 |
+
|
172 |
+
def transform(pt, center, scale, res, invert=0, rot=0, as_int=True):
|
173 |
+
"""Transform pixel location to different reference."""
|
174 |
+
"""Taken from PARE: https://github.com/mkocabas/PARE/blob/6e0caca86c6ab49ff80014b661350958e5b72fd8/pare/utils/image_utils.py"""
|
175 |
+
t = get_transform(center, scale, res, rot=rot)
|
176 |
+
if invert:
|
177 |
+
t = np.linalg.inv(t)
|
178 |
+
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
|
179 |
+
new_pt = np.dot(t, new_pt)
|
180 |
+
if as_int:
|
181 |
+
new_pt = new_pt.astype(int)
|
182 |
+
return new_pt[:2] + 1
|
183 |
+
|
184 |
+
def crop_img(img, ul, br, border_mode=cv2.BORDER_CONSTANT, border_value=0):
|
185 |
+
c_x = (ul[0] + br[0])/2
|
186 |
+
c_y = (ul[1] + br[1])/2
|
187 |
+
bb_width = patch_width = br[0] - ul[0]
|
188 |
+
bb_height = patch_height = br[1] - ul[1]
|
189 |
+
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, 1.0, 0)
|
190 |
+
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)),
|
191 |
+
flags=cv2.INTER_LINEAR,
|
192 |
+
borderMode=border_mode,
|
193 |
+
borderValue=border_value
|
194 |
+
)
|
195 |
+
|
196 |
+
# Force borderValue=cv2.BORDER_CONSTANT for alpha channel
|
197 |
+
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT):
|
198 |
+
img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)),
|
199 |
+
flags=cv2.INTER_LINEAR,
|
200 |
+
borderMode=cv2.BORDER_CONSTANT,
|
201 |
+
)
|
202 |
+
|
203 |
+
return img_patch
|
204 |
+
|
205 |
+
def generate_image_patch_skimage(img: np.array, c_x: float, c_y: float,
|
206 |
+
bb_width: float, bb_height: float,
|
207 |
+
patch_width: float, patch_height: float,
|
208 |
+
do_flip: bool, scale: float, rot: float,
|
209 |
+
border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]:
|
210 |
+
"""
|
211 |
+
Crop image according to the supplied bounding box.
|
212 |
+
Args:
|
213 |
+
img (np.array): Input image of shape (H, W, 3)
|
214 |
+
c_x (float): Bounding box center x coordinate in the original image.
|
215 |
+
c_y (float): Bounding box center y coordinate in the original image.
|
216 |
+
bb_width (float): Bounding box width.
|
217 |
+
bb_height (float): Bounding box height.
|
218 |
+
patch_width (float): Output box width.
|
219 |
+
patch_height (float): Output box height.
|
220 |
+
do_flip (bool): Whether to flip image or not.
|
221 |
+
scale (float): Rescaling factor for the bounding box (augmentation).
|
222 |
+
rot (float): Random rotation applied to the box.
|
223 |
+
Returns:
|
224 |
+
img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3)
|
225 |
+
trans (np.array): Transformation matrix.
|
226 |
+
"""
|
227 |
+
|
228 |
+
img_height, img_width, img_channels = img.shape
|
229 |
+
if do_flip:
|
230 |
+
img = img[:, ::-1, :]
|
231 |
+
c_x = img_width - c_x - 1
|
232 |
+
|
233 |
+
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot)
|
234 |
+
|
235 |
+
#img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)), flags=cv2.INTER_LINEAR)
|
236 |
+
|
237 |
+
# skimage
|
238 |
+
center = np.zeros(2)
|
239 |
+
center[0] = c_x
|
240 |
+
center[1] = c_y
|
241 |
+
res = np.zeros(2)
|
242 |
+
res[0] = patch_width
|
243 |
+
res[1] = patch_height
|
244 |
+
# assumes bb_width = bb_height
|
245 |
+
# assumes patch_width = patch_height
|
246 |
+
assert bb_width == bb_height, f'{bb_width=} != {bb_height=}'
|
247 |
+
assert patch_width == patch_height, f'{patch_width=} != {patch_height=}'
|
248 |
+
scale1 = scale*bb_width/200.
|
249 |
+
|
250 |
+
# Upper left point
|
251 |
+
ul = np.array(transform([1, 1], center, scale1, res, invert=1, as_int=False)) - 1
|
252 |
+
# Bottom right point
|
253 |
+
br = np.array(transform([res[0] + 1,
|
254 |
+
res[1] + 1], center, scale1, res, invert=1, as_int=False)) - 1
|
255 |
+
|
256 |
+
# Padding so that when rotated proper amount of context is included
|
257 |
+
try:
|
258 |
+
pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) + 1
|
259 |
+
except:
|
260 |
+
breakpoint()
|
261 |
+
if not rot == 0:
|
262 |
+
ul -= pad
|
263 |
+
br += pad
|
264 |
+
|
265 |
+
|
266 |
+
if False:
|
267 |
+
# Old way of cropping image
|
268 |
+
ul_int = ul.astype(int)
|
269 |
+
br_int = br.astype(int)
|
270 |
+
new_shape = [br_int[1] - ul_int[1], br_int[0] - ul_int[0]]
|
271 |
+
if len(img.shape) > 2:
|
272 |
+
new_shape += [img.shape[2]]
|
273 |
+
new_img = np.zeros(new_shape)
|
274 |
+
|
275 |
+
# Range to fill new array
|
276 |
+
new_x = max(0, -ul_int[0]), min(br_int[0], len(img[0])) - ul_int[0]
|
277 |
+
new_y = max(0, -ul_int[1]), min(br_int[1], len(img)) - ul_int[1]
|
278 |
+
# Range to sample from original image
|
279 |
+
old_x = max(0, ul_int[0]), min(len(img[0]), br_int[0])
|
280 |
+
old_y = max(0, ul_int[1]), min(len(img), br_int[1])
|
281 |
+
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1],
|
282 |
+
old_x[0]:old_x[1]]
|
283 |
+
|
284 |
+
# New way of cropping image
|
285 |
+
new_img = crop_img(img, ul, br, border_mode=border_mode, border_value=border_value).astype(np.float32)
|
286 |
+
|
287 |
+
# print(f'{new_img.shape=}')
|
288 |
+
# print(f'{new_img1.shape=}')
|
289 |
+
# print(f'{np.allclose(new_img, new_img1)=}')
|
290 |
+
# print(f'{img.dtype=}')
|
291 |
+
|
292 |
+
|
293 |
+
if not rot == 0:
|
294 |
+
# Remove padding
|
295 |
+
|
296 |
+
new_img = rotate(new_img, rot) # scipy.misc.imrotate(new_img, rot)
|
297 |
+
new_img = new_img[pad:-pad, pad:-pad]
|
298 |
+
|
299 |
+
if new_img.shape[0] < 1 or new_img.shape[1] < 1:
|
300 |
+
print(f'{img.shape=}')
|
301 |
+
print(f'{new_img.shape=}')
|
302 |
+
print(f'{ul=}')
|
303 |
+
print(f'{br=}')
|
304 |
+
print(f'{pad=}')
|
305 |
+
print(f'{rot=}')
|
306 |
+
|
307 |
+
breakpoint()
|
308 |
+
|
309 |
+
# resize image
|
310 |
+
new_img = resize(new_img, res) # scipy.misc.imresize(new_img, res)
|
311 |
+
|
312 |
+
new_img = np.clip(new_img, 0, 255).astype(np.uint8)
|
313 |
+
|
314 |
+
return new_img, trans
|
315 |
+
|
316 |
+
|
317 |
+
def generate_image_patch_cv2(img: np.array, c_x: float, c_y: float,
|
318 |
+
bb_width: float, bb_height: float,
|
319 |
+
patch_width: float, patch_height: float,
|
320 |
+
do_flip: bool, scale: float, rot: float,
|
321 |
+
border_mode=cv2.BORDER_CONSTANT, border_value=0) -> Tuple[np.array, np.array]:
|
322 |
+
"""
|
323 |
+
Crop the input image and return the crop and the corresponding transformation matrix.
|
324 |
+
Args:
|
325 |
+
img (np.array): Input image of shape (H, W, 3)
|
326 |
+
c_x (float): Bounding box center x coordinate in the original image.
|
327 |
+
c_y (float): Bounding box center y coordinate in the original image.
|
328 |
+
bb_width (float): Bounding box width.
|
329 |
+
bb_height (float): Bounding box height.
|
330 |
+
patch_width (float): Output box width.
|
331 |
+
patch_height (float): Output box height.
|
332 |
+
do_flip (bool): Whether to flip image or not.
|
333 |
+
scale (float): Rescaling factor for the bounding box (augmentation).
|
334 |
+
rot (float): Random rotation applied to the box.
|
335 |
+
Returns:
|
336 |
+
img_patch (np.array): Cropped image patch of shape (patch_height, patch_height, 3)
|
337 |
+
trans (np.array): Transformation matrix.
|
338 |
+
"""
|
339 |
+
|
340 |
+
img_height, img_width, img_channels = img.shape
|
341 |
+
if do_flip:
|
342 |
+
img = img[:, ::-1, :]
|
343 |
+
c_x = img_width - c_x - 1
|
344 |
+
|
345 |
+
|
346 |
+
trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot)
|
347 |
+
|
348 |
+
img_patch = cv2.warpAffine(img, trans, (int(patch_width), int(patch_height)),
|
349 |
+
flags=cv2.INTER_LINEAR,
|
350 |
+
borderMode=border_mode,
|
351 |
+
borderValue=border_value,
|
352 |
+
)
|
353 |
+
# Force borderValue=cv2.BORDER_CONSTANT for alpha channel
|
354 |
+
if (img.shape[2] == 4) and (border_mode != cv2.BORDER_CONSTANT):
|
355 |
+
img_patch[:,:,3] = cv2.warpAffine(img[:,:,3], trans, (int(patch_width), int(patch_height)),
|
356 |
+
flags=cv2.INTER_LINEAR,
|
357 |
+
borderMode=cv2.BORDER_CONSTANT,
|
358 |
+
)
|
359 |
+
|
360 |
+
return img_patch, trans
|
361 |
+
|
362 |
+
|
363 |
+
def convert_cvimg_to_tensor(cvimg: np.array):
|
364 |
+
"""
|
365 |
+
Convert image from HWC to CHW format.
|
366 |
+
Args:
|
367 |
+
cvimg (np.array): Image of shape (H, W, 3) as loaded by OpenCV.
|
368 |
+
Returns:
|
369 |
+
np.array: Output image of shape (3, H, W).
|
370 |
+
"""
|
371 |
+
# from h,w,c(OpenCV) to c,h,w
|
372 |
+
img = cvimg.copy()
|
373 |
+
img = np.transpose(img, (2, 0, 1))
|
374 |
+
# from int to float
|
375 |
+
img = img.astype(np.float32)
|
376 |
+
return img
|
377 |
+
|
378 |
+
def fliplr_params(mano_params: Dict, has_mano_params: Dict) -> Tuple[Dict, Dict]:
|
379 |
+
"""
|
380 |
+
Flip MANO parameters when flipping the image.
|
381 |
+
Args:
|
382 |
+
mano_params (Dict): MANO parameter annotations.
|
383 |
+
has_mano_params (Dict): Whether MANO annotations are valid.
|
384 |
+
Returns:
|
385 |
+
Dict, Dict: Flipped MANO parameters and valid flags.
|
386 |
+
"""
|
387 |
+
global_orient = mano_params['global_orient'].copy()
|
388 |
+
hand_pose = mano_params['hand_pose'].copy()
|
389 |
+
betas = mano_params['betas'].copy()
|
390 |
+
has_global_orient = has_mano_params['global_orient'].copy()
|
391 |
+
has_hand_pose = has_mano_params['hand_pose'].copy()
|
392 |
+
has_betas = has_mano_params['betas'].copy()
|
393 |
+
|
394 |
+
global_orient[1::3] *= -1
|
395 |
+
global_orient[2::3] *= -1
|
396 |
+
hand_pose[1::3] *= -1
|
397 |
+
hand_pose[2::3] *= -1
|
398 |
+
|
399 |
+
mano_params = {'global_orient': global_orient.astype(np.float32),
|
400 |
+
'hand_pose': hand_pose.astype(np.float32),
|
401 |
+
'betas': betas.astype(np.float32)
|
402 |
+
}
|
403 |
+
|
404 |
+
has_mano_params = {'global_orient': has_global_orient,
|
405 |
+
'hand_pose': has_hand_pose,
|
406 |
+
'betas': has_betas
|
407 |
+
}
|
408 |
+
|
409 |
+
return mano_params, has_mano_params
|
410 |
+
|
411 |
+
|
412 |
+
def fliplr_keypoints(joints: np.array, width: float, flip_permutation: List[int]) -> np.array:
|
413 |
+
"""
|
414 |
+
Flip 2D or 3D keypoints.
|
415 |
+
Args:
|
416 |
+
joints (np.array): Array of shape (N, 3) or (N, 4) containing 2D or 3D keypoint locations and confidence.
|
417 |
+
flip_permutation (List): Permutation to apply after flipping.
|
418 |
+
Returns:
|
419 |
+
np.array: Flipped 2D or 3D keypoints with shape (N, 3) or (N, 4) respectively.
|
420 |
+
"""
|
421 |
+
joints = joints.copy()
|
422 |
+
# Flip horizontal
|
423 |
+
joints[:, 0] = width - joints[:, 0] - 1
|
424 |
+
joints = joints[flip_permutation, :]
|
425 |
+
|
426 |
+
return joints
|
427 |
+
|
428 |
+
def keypoint_3d_processing(keypoints_3d: np.array, flip_permutation: List[int], rot: float, do_flip: float) -> np.array:
|
429 |
+
"""
|
430 |
+
Process 3D keypoints (rotation/flipping).
|
431 |
+
Args:
|
432 |
+
keypoints_3d (np.array): Input array of shape (N, 4) containing the 3D keypoints and confidence.
|
433 |
+
flip_permutation (List): Permutation to apply after flipping.
|
434 |
+
rot (float): Random rotation applied to the keypoints.
|
435 |
+
do_flip (bool): Whether to flip keypoints or not.
|
436 |
+
Returns:
|
437 |
+
np.array: Transformed 3D keypoints with shape (N, 4).
|
438 |
+
"""
|
439 |
+
if do_flip:
|
440 |
+
keypoints_3d = fliplr_keypoints(keypoints_3d, 1, flip_permutation)
|
441 |
+
# in-plane rotation
|
442 |
+
rot_mat = np.eye(3)
|
443 |
+
if not rot == 0:
|
444 |
+
rot_rad = -rot * np.pi / 180
|
445 |
+
sn,cs = np.sin(rot_rad), np.cos(rot_rad)
|
446 |
+
rot_mat[0,:2] = [cs, -sn]
|
447 |
+
rot_mat[1,:2] = [sn, cs]
|
448 |
+
keypoints_3d[:, :-1] = np.einsum('ij,kj->ki', rot_mat, keypoints_3d[:, :-1])
|
449 |
+
# flip the x coordinates
|
450 |
+
keypoints_3d = keypoints_3d.astype('float32')
|
451 |
+
return keypoints_3d
|
452 |
+
|
453 |
+
def rot_aa(aa: np.array, rot: float) -> np.array:
|
454 |
+
"""
|
455 |
+
Rotate axis angle parameters.
|
456 |
+
Args:
|
457 |
+
aa (np.array): Axis-angle vector of shape (3,).
|
458 |
+
rot (np.array): Rotation angle in degrees.
|
459 |
+
Returns:
|
460 |
+
np.array: Rotated axis-angle vector.
|
461 |
+
"""
|
462 |
+
# pose parameters
|
463 |
+
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
|
464 |
+
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0],
|
465 |
+
[0, 0, 1]])
|
466 |
+
# find the rotation of the hand in camera frame
|
467 |
+
per_rdg, _ = cv2.Rodrigues(aa)
|
468 |
+
# apply the global rotation to the global orientation
|
469 |
+
resrot, _ = cv2.Rodrigues(np.dot(R,per_rdg))
|
470 |
+
aa = (resrot.T)[0]
|
471 |
+
return aa.astype(np.float32)
|
472 |
+
|
473 |
+
def mano_param_processing(mano_params: Dict, has_mano_params: Dict, rot: float, do_flip: bool) -> Tuple[Dict, Dict]:
|
474 |
+
"""
|
475 |
+
Apply random augmentations to the MANO parameters.
|
476 |
+
Args:
|
477 |
+
mano_params (Dict): MANO parameter annotations.
|
478 |
+
has_mano_params (Dict): Whether mano annotations are valid.
|
479 |
+
rot (float): Random rotation applied to the keypoints.
|
480 |
+
do_flip (bool): Whether to flip keypoints or not.
|
481 |
+
Returns:
|
482 |
+
Dict, Dict: Transformed MANO parameters and valid flags.
|
483 |
+
"""
|
484 |
+
if do_flip:
|
485 |
+
mano_params, has_mano_params = fliplr_params(mano_params, has_mano_params)
|
486 |
+
mano_params['global_orient'] = rot_aa(mano_params['global_orient'], rot)
|
487 |
+
return mano_params, has_mano_params
|
488 |
+
|
489 |
+
|
490 |
+
|
491 |
+
def get_example(img_path: str|np.ndarray, center_x: float, center_y: float,
|
492 |
+
width: float, height: float,
|
493 |
+
keypoints_2d: np.array, keypoints_3d: np.array,
|
494 |
+
mano_params: Dict, has_mano_params: Dict,
|
495 |
+
flip_kp_permutation: List[int],
|
496 |
+
patch_width: int, patch_height: int,
|
497 |
+
mean: np.array, std: np.array,
|
498 |
+
do_augment: bool, is_right: bool, augm_config: CfgNode,
|
499 |
+
is_bgr: bool = True,
|
500 |
+
use_skimage_antialias: bool = False,
|
501 |
+
border_mode: int = cv2.BORDER_CONSTANT,
|
502 |
+
return_trans: bool = False) -> Tuple:
|
503 |
+
"""
|
504 |
+
Get an example from the dataset and (possibly) apply random augmentations.
|
505 |
+
Args:
|
506 |
+
img_path (str): Image filename
|
507 |
+
center_x (float): Bounding box center x coordinate in the original image.
|
508 |
+
center_y (float): Bounding box center y coordinate in the original image.
|
509 |
+
width (float): Bounding box width.
|
510 |
+
height (float): Bounding box height.
|
511 |
+
keypoints_2d (np.array): Array with shape (N,3) containing the 2D keypoints in the original image coordinates.
|
512 |
+
keypoints_3d (np.array): Array with shape (N,4) containing the 3D keypoints.
|
513 |
+
mano_params (Dict): MANO parameter annotations.
|
514 |
+
has_mano_params (Dict): Whether MANO annotations are valid.
|
515 |
+
flip_kp_permutation (List): Permutation to apply to the keypoints after flipping.
|
516 |
+
patch_width (float): Output box width.
|
517 |
+
patch_height (float): Output box height.
|
518 |
+
mean (np.array): Array of shape (3,) containing the mean for normalizing the input image.
|
519 |
+
std (np.array): Array of shape (3,) containing the std for normalizing the input image.
|
520 |
+
do_augment (bool): Whether to apply data augmentation or not.
|
521 |
+
aug_config (CfgNode): Config containing augmentation parameters.
|
522 |
+
Returns:
|
523 |
+
return img_patch, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size
|
524 |
+
img_patch (np.array): Cropped image patch of shape (3, patch_height, patch_height)
|
525 |
+
keypoints_2d (np.array): Array with shape (N,3) containing the transformed 2D keypoints.
|
526 |
+
keypoints_3d (np.array): Array with shape (N,4) containing the transformed 3D keypoints.
|
527 |
+
mano_params (Dict): Transformed MANO parameters.
|
528 |
+
has_mano_params (Dict): Valid flag for transformed MANO parameters.
|
529 |
+
img_size (np.array): Image size of the original image.
|
530 |
+
"""
|
531 |
+
if isinstance(img_path, str):
|
532 |
+
# 1. load image
|
533 |
+
cvimg = cv2.imread(img_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
|
534 |
+
if not isinstance(cvimg, np.ndarray):
|
535 |
+
raise IOError("Fail to read %s" % img_path)
|
536 |
+
elif isinstance(img_path, np.ndarray):
|
537 |
+
cvimg = img_path
|
538 |
+
else:
|
539 |
+
raise TypeError('img_path must be either a string or a numpy array')
|
540 |
+
img_height, img_width, img_channels = cvimg.shape
|
541 |
+
|
542 |
+
img_size = np.array([img_height, img_width])
|
543 |
+
|
544 |
+
# 2. get augmentation params
|
545 |
+
if do_augment:
|
546 |
+
scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = do_augmentation(augm_config)
|
547 |
+
else:
|
548 |
+
scale, rot, do_flip, do_extreme_crop, extreme_crop_lvl, color_scale, tx, ty = 1.0, 0, False, False, 0, [1.0, 1.0, 1.0], 0., 0.
|
549 |
+
|
550 |
+
# if it's a left hand, we flip
|
551 |
+
if not is_right:
|
552 |
+
do_flip = True
|
553 |
+
|
554 |
+
if width < 1 or height < 1:
|
555 |
+
breakpoint()
|
556 |
+
|
557 |
+
if do_extreme_crop:
|
558 |
+
if extreme_crop_lvl == 0:
|
559 |
+
center_x1, center_y1, width1, height1 = extreme_cropping(center_x, center_y, width, height, keypoints_2d)
|
560 |
+
elif extreme_crop_lvl == 1:
|
561 |
+
center_x1, center_y1, width1, height1 = extreme_cropping_aggressive(center_x, center_y, width, height, keypoints_2d)
|
562 |
+
|
563 |
+
THRESH = 4
|
564 |
+
if width1 < THRESH or height1 < THRESH:
|
565 |
+
# print(f'{do_extreme_crop=}')
|
566 |
+
# print(f'width: {width}, height: {height}')
|
567 |
+
# print(f'width1: {width1}, height1: {height1}')
|
568 |
+
# print(f'center_x: {center_x}, center_y: {center_y}')
|
569 |
+
# print(f'center_x1: {center_x1}, center_y1: {center_y1}')
|
570 |
+
# print(f'keypoints_2d: {keypoints_2d}')
|
571 |
+
# print(f'\n\n', flush=True)
|
572 |
+
# breakpoint()
|
573 |
+
pass
|
574 |
+
# print(f'skip ==> width1: {width1}, height1: {height1}, width: {width}, height: {height}')
|
575 |
+
else:
|
576 |
+
center_x, center_y, width, height = center_x1, center_y1, width1, height1
|
577 |
+
|
578 |
+
center_x += width * tx
|
579 |
+
center_y += height * ty
|
580 |
+
|
581 |
+
# Process 3D keypoints
|
582 |
+
keypoints_3d = keypoint_3d_processing(keypoints_3d, flip_kp_permutation, rot, do_flip)
|
583 |
+
|
584 |
+
# 3. generate image patch
|
585 |
+
if use_skimage_antialias:
|
586 |
+
# Blur image to avoid aliasing artifacts
|
587 |
+
downsampling_factor = (patch_width / (width*scale))
|
588 |
+
if downsampling_factor > 1.1:
|
589 |
+
cvimg = gaussian(cvimg, sigma=(downsampling_factor-1)/2, channel_axis=2, preserve_range=True, truncate=3.0)
|
590 |
+
|
591 |
+
img_patch_cv, trans = generate_image_patch_cv2(cvimg,
|
592 |
+
center_x, center_y,
|
593 |
+
width, height,
|
594 |
+
patch_width, patch_height,
|
595 |
+
do_flip, scale, rot,
|
596 |
+
border_mode=border_mode)
|
597 |
+
# img_patch_cv, trans = generate_image_patch_skimage(cvimg,
|
598 |
+
# center_x, center_y,
|
599 |
+
# width, height,
|
600 |
+
# patch_width, patch_height,
|
601 |
+
# do_flip, scale, rot,
|
602 |
+
# border_mode=border_mode)
|
603 |
+
|
604 |
+
image = img_patch_cv.copy()
|
605 |
+
if is_bgr:
|
606 |
+
image = image[:, :, ::-1]
|
607 |
+
img_patch_cv = image.copy()
|
608 |
+
img_patch = convert_cvimg_to_tensor(image)
|
609 |
+
|
610 |
+
|
611 |
+
mano_params, has_mano_params = mano_param_processing(mano_params, has_mano_params, rot, do_flip)
|
612 |
+
|
613 |
+
# apply normalization
|
614 |
+
for n_c in range(min(img_channels, 3)):
|
615 |
+
img_patch[n_c, :, :] = np.clip(img_patch[n_c, :, :] * color_scale[n_c], 0, 255)
|
616 |
+
if mean is not None and std is not None:
|
617 |
+
img_patch[n_c, :, :] = (img_patch[n_c, :, :] - mean[n_c]) / std[n_c]
|
618 |
+
if do_flip:
|
619 |
+
keypoints_2d = fliplr_keypoints(keypoints_2d, img_width, flip_kp_permutation)
|
620 |
+
|
621 |
+
|
622 |
+
for n_jt in range(len(keypoints_2d)):
|
623 |
+
keypoints_2d[n_jt, 0:2] = trans_point2d(keypoints_2d[n_jt, 0:2], trans)
|
624 |
+
keypoints_2d[:, :-1] = keypoints_2d[:, :-1] / patch_width - 0.5
|
625 |
+
|
626 |
+
if not return_trans:
|
627 |
+
return img_patch, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size
|
628 |
+
else:
|
629 |
+
return img_patch, keypoints_2d, keypoints_3d, mano_params, has_mano_params, img_size, trans
|
630 |
+
|
631 |
+
def crop_to_hips(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
|
632 |
+
"""
|
633 |
+
Extreme cropping: Crop the box up to the hip locations.
|
634 |
+
Args:
|
635 |
+
center_x (float): x coordinate of the bounding box center.
|
636 |
+
center_y (float): y coordinate of the bounding box center.
|
637 |
+
width (float): Bounding box width.
|
638 |
+
height (float): Bounding box height.
|
639 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
640 |
+
Returns:
|
641 |
+
center_x (float): x coordinate of the new bounding box center.
|
642 |
+
center_y (float): y coordinate of the new bounding box center.
|
643 |
+
width (float): New bounding box width.
|
644 |
+
height (float): New bounding box height.
|
645 |
+
"""
|
646 |
+
keypoints_2d = keypoints_2d.copy()
|
647 |
+
lower_body_keypoints = [10, 11, 13, 14, 19, 20, 21, 22, 23, 24, 25+0, 25+1, 25+4, 25+5]
|
648 |
+
keypoints_2d[lower_body_keypoints, :] = 0
|
649 |
+
if keypoints_2d[:, -1].sum() > 1:
|
650 |
+
center, scale = get_bbox(keypoints_2d)
|
651 |
+
center_x = center[0]
|
652 |
+
center_y = center[1]
|
653 |
+
width = 1.1 * scale[0]
|
654 |
+
height = 1.1 * scale[1]
|
655 |
+
return center_x, center_y, width, height
|
656 |
+
|
657 |
+
|
658 |
+
def crop_to_shoulders(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
659 |
+
"""
|
660 |
+
Extreme cropping: Crop the box up to the shoulder locations.
|
661 |
+
Args:
|
662 |
+
center_x (float): x coordinate of the bounding box center.
|
663 |
+
center_y (float): y coordinate of the bounding box center.
|
664 |
+
width (float): Bounding box width.
|
665 |
+
height (float): Bounding box height.
|
666 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
667 |
+
Returns:
|
668 |
+
center_x (float): x coordinate of the new bounding box center.
|
669 |
+
center_y (float): y coordinate of the new bounding box center.
|
670 |
+
width (float): New bounding box width.
|
671 |
+
height (float): New bounding box height.
|
672 |
+
"""
|
673 |
+
keypoints_2d = keypoints_2d.copy()
|
674 |
+
lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 16]]
|
675 |
+
keypoints_2d[lower_body_keypoints, :] = 0
|
676 |
+
center, scale = get_bbox(keypoints_2d)
|
677 |
+
if keypoints_2d[:, -1].sum() > 1:
|
678 |
+
center, scale = get_bbox(keypoints_2d)
|
679 |
+
center_x = center[0]
|
680 |
+
center_y = center[1]
|
681 |
+
width = 1.2 * scale[0]
|
682 |
+
height = 1.2 * scale[1]
|
683 |
+
return center_x, center_y, width, height
|
684 |
+
|
685 |
+
def crop_to_head(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
686 |
+
"""
|
687 |
+
Extreme cropping: Crop the box and keep on only the head.
|
688 |
+
Args:
|
689 |
+
center_x (float): x coordinate of the bounding box center.
|
690 |
+
center_y (float): y coordinate of the bounding box center.
|
691 |
+
width (float): Bounding box width.
|
692 |
+
height (float): Bounding box height.
|
693 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
694 |
+
Returns:
|
695 |
+
center_x (float): x coordinate of the new bounding box center.
|
696 |
+
center_y (float): y coordinate of the new bounding box center.
|
697 |
+
width (float): New bounding box width.
|
698 |
+
height (float): New bounding box height.
|
699 |
+
"""
|
700 |
+
keypoints_2d = keypoints_2d.copy()
|
701 |
+
lower_body_keypoints = [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16]]
|
702 |
+
keypoints_2d[lower_body_keypoints, :] = 0
|
703 |
+
if keypoints_2d[:, -1].sum() > 1:
|
704 |
+
center, scale = get_bbox(keypoints_2d)
|
705 |
+
center_x = center[0]
|
706 |
+
center_y = center[1]
|
707 |
+
width = 1.3 * scale[0]
|
708 |
+
height = 1.3 * scale[1]
|
709 |
+
return center_x, center_y, width, height
|
710 |
+
|
711 |
+
def crop_torso_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
712 |
+
"""
|
713 |
+
Extreme cropping: Crop the box and keep on only the torso.
|
714 |
+
Args:
|
715 |
+
center_x (float): x coordinate of the bounding box center.
|
716 |
+
center_y (float): y coordinate of the bounding box center.
|
717 |
+
width (float): Bounding box width.
|
718 |
+
height (float): Bounding box height.
|
719 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
720 |
+
Returns:
|
721 |
+
center_x (float): x coordinate of the new bounding box center.
|
722 |
+
center_y (float): y coordinate of the new bounding box center.
|
723 |
+
width (float): New bounding box width.
|
724 |
+
height (float): New bounding box height.
|
725 |
+
"""
|
726 |
+
keypoints_2d = keypoints_2d.copy()
|
727 |
+
nontorso_body_keypoints = [0, 3, 4, 6, 7, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 4, 5, 6, 7, 10, 11, 13, 17, 18]]
|
728 |
+
keypoints_2d[nontorso_body_keypoints, :] = 0
|
729 |
+
if keypoints_2d[:, -1].sum() > 1:
|
730 |
+
center, scale = get_bbox(keypoints_2d)
|
731 |
+
center_x = center[0]
|
732 |
+
center_y = center[1]
|
733 |
+
width = 1.1 * scale[0]
|
734 |
+
height = 1.1 * scale[1]
|
735 |
+
return center_x, center_y, width, height
|
736 |
+
|
737 |
+
def crop_rightarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
738 |
+
"""
|
739 |
+
Extreme cropping: Crop the box and keep on only the right arm.
|
740 |
+
Args:
|
741 |
+
center_x (float): x coordinate of the bounding box center.
|
742 |
+
center_y (float): y coordinate of the bounding box center.
|
743 |
+
width (float): Bounding box width.
|
744 |
+
height (float): Bounding box height.
|
745 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
746 |
+
Returns:
|
747 |
+
center_x (float): x coordinate of the new bounding box center.
|
748 |
+
center_y (float): y coordinate of the new bounding box center.
|
749 |
+
width (float): New bounding box width.
|
750 |
+
height (float): New bounding box height.
|
751 |
+
"""
|
752 |
+
keypoints_2d = keypoints_2d.copy()
|
753 |
+
nonrightarm_body_keypoints = [0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
|
754 |
+
keypoints_2d[nonrightarm_body_keypoints, :] = 0
|
755 |
+
if keypoints_2d[:, -1].sum() > 1:
|
756 |
+
center, scale = get_bbox(keypoints_2d)
|
757 |
+
center_x = center[0]
|
758 |
+
center_y = center[1]
|
759 |
+
width = 1.1 * scale[0]
|
760 |
+
height = 1.1 * scale[1]
|
761 |
+
return center_x, center_y, width, height
|
762 |
+
|
763 |
+
def crop_leftarm_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
764 |
+
"""
|
765 |
+
Extreme cropping: Crop the box and keep on only the left arm.
|
766 |
+
Args:
|
767 |
+
center_x (float): x coordinate of the bounding box center.
|
768 |
+
center_y (float): y coordinate of the bounding box center.
|
769 |
+
width (float): Bounding box width.
|
770 |
+
height (float): Bounding box height.
|
771 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
772 |
+
Returns:
|
773 |
+
center_x (float): x coordinate of the new bounding box center.
|
774 |
+
center_y (float): y coordinate of the new bounding box center.
|
775 |
+
width (float): New bounding box width.
|
776 |
+
height (float): New bounding box height.
|
777 |
+
"""
|
778 |
+
keypoints_2d = keypoints_2d.copy()
|
779 |
+
nonleftarm_body_keypoints = [0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24] + [25 + i for i in [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18]]
|
780 |
+
keypoints_2d[nonleftarm_body_keypoints, :] = 0
|
781 |
+
if keypoints_2d[:, -1].sum() > 1:
|
782 |
+
center, scale = get_bbox(keypoints_2d)
|
783 |
+
center_x = center[0]
|
784 |
+
center_y = center[1]
|
785 |
+
width = 1.1 * scale[0]
|
786 |
+
height = 1.1 * scale[1]
|
787 |
+
return center_x, center_y, width, height
|
788 |
+
|
789 |
+
def crop_legs_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
790 |
+
"""
|
791 |
+
Extreme cropping: Crop the box and keep on only the legs.
|
792 |
+
Args:
|
793 |
+
center_x (float): x coordinate of the bounding box center.
|
794 |
+
center_y (float): y coordinate of the bounding box center.
|
795 |
+
width (float): Bounding box width.
|
796 |
+
height (float): Bounding box height.
|
797 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
798 |
+
Returns:
|
799 |
+
center_x (float): x coordinate of the new bounding box center.
|
800 |
+
center_y (float): y coordinate of the new bounding box center.
|
801 |
+
width (float): New bounding box width.
|
802 |
+
height (float): New bounding box height.
|
803 |
+
"""
|
804 |
+
keypoints_2d = keypoints_2d.copy()
|
805 |
+
nonlegs_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18] + [25 + i for i in [6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18]]
|
806 |
+
keypoints_2d[nonlegs_body_keypoints, :] = 0
|
807 |
+
if keypoints_2d[:, -1].sum() > 1:
|
808 |
+
center, scale = get_bbox(keypoints_2d)
|
809 |
+
center_x = center[0]
|
810 |
+
center_y = center[1]
|
811 |
+
width = 1.1 * scale[0]
|
812 |
+
height = 1.1 * scale[1]
|
813 |
+
return center_x, center_y, width, height
|
814 |
+
|
815 |
+
def crop_rightleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
816 |
+
"""
|
817 |
+
Extreme cropping: Crop the box and keep on only the right leg.
|
818 |
+
Args:
|
819 |
+
center_x (float): x coordinate of the bounding box center.
|
820 |
+
center_y (float): y coordinate of the bounding box center.
|
821 |
+
width (float): Bounding box width.
|
822 |
+
height (float): Bounding box height.
|
823 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
824 |
+
Returns:
|
825 |
+
center_x (float): x coordinate of the new bounding box center.
|
826 |
+
center_y (float): y coordinate of the new bounding box center.
|
827 |
+
width (float): New bounding box width.
|
828 |
+
height (float): New bounding box height.
|
829 |
+
"""
|
830 |
+
keypoints_2d = keypoints_2d.copy()
|
831 |
+
nonrightleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] + [25 + i for i in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
|
832 |
+
keypoints_2d[nonrightleg_body_keypoints, :] = 0
|
833 |
+
if keypoints_2d[:, -1].sum() > 1:
|
834 |
+
center, scale = get_bbox(keypoints_2d)
|
835 |
+
center_x = center[0]
|
836 |
+
center_y = center[1]
|
837 |
+
width = 1.1 * scale[0]
|
838 |
+
height = 1.1 * scale[1]
|
839 |
+
return center_x, center_y, width, height
|
840 |
+
|
841 |
+
def crop_leftleg_only(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array):
|
842 |
+
"""
|
843 |
+
Extreme cropping: Crop the box and keep on only the left leg.
|
844 |
+
Args:
|
845 |
+
center_x (float): x coordinate of the bounding box center.
|
846 |
+
center_y (float): y coordinate of the bounding box center.
|
847 |
+
width (float): Bounding box width.
|
848 |
+
height (float): Bounding box height.
|
849 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
850 |
+
Returns:
|
851 |
+
center_x (float): x coordinate of the new bounding box center.
|
852 |
+
center_y (float): y coordinate of the new bounding box center.
|
853 |
+
width (float): New bounding box width.
|
854 |
+
height (float): New bounding box height.
|
855 |
+
"""
|
856 |
+
keypoints_2d = keypoints_2d.copy()
|
857 |
+
nonleftleg_body_keypoints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15, 16, 17, 18, 22, 23, 24] + [25 + i for i in [0, 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]]
|
858 |
+
keypoints_2d[nonleftleg_body_keypoints, :] = 0
|
859 |
+
if keypoints_2d[:, -1].sum() > 1:
|
860 |
+
center, scale = get_bbox(keypoints_2d)
|
861 |
+
center_x = center[0]
|
862 |
+
center_y = center[1]
|
863 |
+
width = 1.1 * scale[0]
|
864 |
+
height = 1.1 * scale[1]
|
865 |
+
return center_x, center_y, width, height
|
866 |
+
|
867 |
+
def full_body(keypoints_2d: np.array) -> bool:
|
868 |
+
"""
|
869 |
+
Check if all main body joints are visible.
|
870 |
+
Args:
|
871 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
872 |
+
Returns:
|
873 |
+
bool: True if all main body joints are visible.
|
874 |
+
"""
|
875 |
+
|
876 |
+
body_keypoints_openpose = [2, 3, 4, 5, 6, 7, 10, 11, 13, 14]
|
877 |
+
body_keypoints = [25 + i for i in [8, 7, 6, 9, 10, 11, 1, 0, 4, 5]]
|
878 |
+
return (np.maximum(keypoints_2d[body_keypoints, -1], keypoints_2d[body_keypoints_openpose, -1]) > 0).sum() == len(body_keypoints)
|
879 |
+
|
880 |
+
def upper_body(keypoints_2d: np.array):
|
881 |
+
"""
|
882 |
+
Check if all upper body joints are visible.
|
883 |
+
Args:
|
884 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
885 |
+
Returns:
|
886 |
+
bool: True if all main body joints are visible.
|
887 |
+
"""
|
888 |
+
lower_body_keypoints_openpose = [10, 11, 13, 14]
|
889 |
+
lower_body_keypoints = [25 + i for i in [1, 0, 4, 5]]
|
890 |
+
upper_body_keypoints_openpose = [0, 1, 15, 16, 17, 18]
|
891 |
+
upper_body_keypoints = [25+8, 25+9, 25+12, 25+13, 25+17, 25+18]
|
892 |
+
return ((keypoints_2d[lower_body_keypoints + lower_body_keypoints_openpose, -1] > 0).sum() == 0)\
|
893 |
+
and ((keypoints_2d[upper_body_keypoints + upper_body_keypoints_openpose, -1] > 0).sum() >= 2)
|
894 |
+
|
895 |
+
def get_bbox(keypoints_2d: np.array, rescale: float = 1.2) -> Tuple:
|
896 |
+
"""
|
897 |
+
Get center and scale for bounding box from openpose detections.
|
898 |
+
Args:
|
899 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
900 |
+
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
|
901 |
+
Returns:
|
902 |
+
center (np.array): Array of shape (2,) containing the new bounding box center.
|
903 |
+
scale (float): New bounding box scale.
|
904 |
+
"""
|
905 |
+
valid = keypoints_2d[:,-1] > 0
|
906 |
+
valid_keypoints = keypoints_2d[valid][:,:-1]
|
907 |
+
center = 0.5 * (valid_keypoints.max(axis=0) + valid_keypoints.min(axis=0))
|
908 |
+
bbox_size = (valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0))
|
909 |
+
# adjust bounding box tightness
|
910 |
+
scale = bbox_size
|
911 |
+
scale *= rescale
|
912 |
+
return center, scale
|
913 |
+
|
914 |
+
def extreme_cropping(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
|
915 |
+
"""
|
916 |
+
Perform extreme cropping
|
917 |
+
Args:
|
918 |
+
center_x (float): x coordinate of bounding box center.
|
919 |
+
center_y (float): y coordinate of bounding box center.
|
920 |
+
width (float): bounding box width.
|
921 |
+
height (float): bounding box height.
|
922 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
923 |
+
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
|
924 |
+
Returns:
|
925 |
+
center_x (float): x coordinate of bounding box center.
|
926 |
+
center_y (float): y coordinate of bounding box center.
|
927 |
+
width (float): bounding box width.
|
928 |
+
height (float): bounding box height.
|
929 |
+
"""
|
930 |
+
p = torch.rand(1).item()
|
931 |
+
if full_body(keypoints_2d):
|
932 |
+
if p < 0.7:
|
933 |
+
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d)
|
934 |
+
elif p < 0.9:
|
935 |
+
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
|
936 |
+
else:
|
937 |
+
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
|
938 |
+
elif upper_body(keypoints_2d):
|
939 |
+
if p < 0.9:
|
940 |
+
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
|
941 |
+
else:
|
942 |
+
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
|
943 |
+
|
944 |
+
return center_x, center_y, max(width, height), max(width, height)
|
945 |
+
|
946 |
+
def extreme_cropping_aggressive(center_x: float, center_y: float, width: float, height: float, keypoints_2d: np.array) -> Tuple:
|
947 |
+
"""
|
948 |
+
Perform aggressive extreme cropping
|
949 |
+
Args:
|
950 |
+
center_x (float): x coordinate of bounding box center.
|
951 |
+
center_y (float): y coordinate of bounding box center.
|
952 |
+
width (float): bounding box width.
|
953 |
+
height (float): bounding box height.
|
954 |
+
keypoints_2d (np.array): Array of shape (N, 3) containing 2D keypoint locations.
|
955 |
+
rescale (float): Scale factor to rescale bounding boxes computed from the keypoints.
|
956 |
+
Returns:
|
957 |
+
center_x (float): x coordinate of bounding box center.
|
958 |
+
center_y (float): y coordinate of bounding box center.
|
959 |
+
width (float): bounding box width.
|
960 |
+
height (float): bounding box height.
|
961 |
+
"""
|
962 |
+
p = torch.rand(1).item()
|
963 |
+
if full_body(keypoints_2d):
|
964 |
+
if p < 0.2:
|
965 |
+
center_x, center_y, width, height = crop_to_hips(center_x, center_y, width, height, keypoints_2d)
|
966 |
+
elif p < 0.3:
|
967 |
+
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
|
968 |
+
elif p < 0.4:
|
969 |
+
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
|
970 |
+
elif p < 0.5:
|
971 |
+
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d)
|
972 |
+
elif p < 0.6:
|
973 |
+
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d)
|
974 |
+
elif p < 0.7:
|
975 |
+
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d)
|
976 |
+
elif p < 0.8:
|
977 |
+
center_x, center_y, width, height = crop_legs_only(center_x, center_y, width, height, keypoints_2d)
|
978 |
+
elif p < 0.9:
|
979 |
+
center_x, center_y, width, height = crop_rightleg_only(center_x, center_y, width, height, keypoints_2d)
|
980 |
+
else:
|
981 |
+
center_x, center_y, width, height = crop_leftleg_only(center_x, center_y, width, height, keypoints_2d)
|
982 |
+
elif upper_body(keypoints_2d):
|
983 |
+
if p < 0.2:
|
984 |
+
center_x, center_y, width, height = crop_to_shoulders(center_x, center_y, width, height, keypoints_2d)
|
985 |
+
elif p < 0.4:
|
986 |
+
center_x, center_y, width, height = crop_to_head(center_x, center_y, width, height, keypoints_2d)
|
987 |
+
elif p < 0.6:
|
988 |
+
center_x, center_y, width, height = crop_torso_only(center_x, center_y, width, height, keypoints_2d)
|
989 |
+
elif p < 0.8:
|
990 |
+
center_x, center_y, width, height = crop_rightarm_only(center_x, center_y, width, height, keypoints_2d)
|
991 |
+
else:
|
992 |
+
center_x, center_y, width, height = crop_leftarm_only(center_x, center_y, width, height, keypoints_2d)
|
993 |
+
return center_x, center_y, max(width, height), max(width, height)
|
hamer/datasets/vitdet_dataset.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from skimage.filters import gaussian
|
6 |
+
from yacs.config import CfgNode
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from .utils import (convert_cvimg_to_tensor,
|
10 |
+
expand_to_aspect_ratio,
|
11 |
+
generate_image_patch_cv2)
|
12 |
+
|
13 |
+
DEFAULT_MEAN = 255. * np.array([0.485, 0.456, 0.406])
|
14 |
+
DEFAULT_STD = 255. * np.array([0.229, 0.224, 0.225])
|
15 |
+
|
16 |
+
class ViTDetDataset(torch.utils.data.Dataset):
|
17 |
+
|
18 |
+
def __init__(self,
|
19 |
+
cfg: CfgNode,
|
20 |
+
img_cv2: np.array,
|
21 |
+
boxes: np.array,
|
22 |
+
right: np.array,
|
23 |
+
rescale_factor=2.5,
|
24 |
+
train: bool = False,
|
25 |
+
**kwargs):
|
26 |
+
super().__init__()
|
27 |
+
self.cfg = cfg
|
28 |
+
self.img_cv2 = img_cv2
|
29 |
+
# self.boxes = boxes
|
30 |
+
|
31 |
+
assert train == False, "ViTDetDataset is only for inference"
|
32 |
+
self.train = train
|
33 |
+
self.img_size = cfg.MODEL.IMAGE_SIZE
|
34 |
+
self.mean = 255. * np.array(self.cfg.MODEL.IMAGE_MEAN)
|
35 |
+
self.std = 255. * np.array(self.cfg.MODEL.IMAGE_STD)
|
36 |
+
|
37 |
+
# Preprocess annotations
|
38 |
+
boxes = boxes.astype(np.float32)
|
39 |
+
self.center = (boxes[:, 2:4] + boxes[:, 0:2]) / 2.0
|
40 |
+
self.scale = rescale_factor * (boxes[:, 2:4] - boxes[:, 0:2]) / 200.0
|
41 |
+
#self.scale = (boxes[:, 2:4] - boxes[:, 0:2]) / 200.0
|
42 |
+
self.personid = np.arange(len(boxes), dtype=np.int32)
|
43 |
+
self.right = right.astype(np.float32)
|
44 |
+
|
45 |
+
def __len__(self) -> int:
|
46 |
+
return len(self.personid)
|
47 |
+
|
48 |
+
def __getitem__(self, idx: int) -> Dict[str, np.array]:
|
49 |
+
|
50 |
+
center = self.center[idx].copy()
|
51 |
+
center_x = center[0]
|
52 |
+
center_y = center[1]
|
53 |
+
|
54 |
+
scale = self.scale[idx]
|
55 |
+
BBOX_SHAPE = self.cfg.MODEL.get('BBOX_SHAPE', None)
|
56 |
+
bbox_size = expand_to_aspect_ratio(scale*200, target_aspect_ratio=BBOX_SHAPE).max()
|
57 |
+
#bbox_size = scale.max()*200
|
58 |
+
|
59 |
+
patch_width = patch_height = self.img_size
|
60 |
+
|
61 |
+
right = self.right[idx].copy()
|
62 |
+
flip = right == 0
|
63 |
+
|
64 |
+
# 3. generate image patch
|
65 |
+
# if use_skimage_antialias:
|
66 |
+
cvimg = self.img_cv2.copy()
|
67 |
+
if True:
|
68 |
+
# Blur image to avoid aliasing artifacts
|
69 |
+
downsampling_factor = ((bbox_size*1.0) / patch_width)
|
70 |
+
print(f'{downsampling_factor=}')
|
71 |
+
downsampling_factor = downsampling_factor / 2.0
|
72 |
+
if downsampling_factor > 1.1:
|
73 |
+
cvimg = gaussian(cvimg, sigma=(downsampling_factor-1)/2, channel_axis=2, preserve_range=True)
|
74 |
+
|
75 |
+
|
76 |
+
img_patch_cv, trans = generate_image_patch_cv2(cvimg,
|
77 |
+
center_x, center_y,
|
78 |
+
bbox_size, bbox_size,
|
79 |
+
patch_width, patch_height,
|
80 |
+
flip, 1.0, 0,
|
81 |
+
border_mode=cv2.BORDER_CONSTANT)
|
82 |
+
img_patch_cv = img_patch_cv[:, :, ::-1]
|
83 |
+
img_patch = convert_cvimg_to_tensor(img_patch_cv)
|
84 |
+
|
85 |
+
# apply normalization
|
86 |
+
for n_c in range(min(self.img_cv2.shape[2], 3)):
|
87 |
+
img_patch[n_c, :, :] = (img_patch[n_c, :, :] - self.mean[n_c]) / self.std[n_c]
|
88 |
+
|
89 |
+
item = {
|
90 |
+
'img': img_patch,
|
91 |
+
'personid': int(self.personid[idx]),
|
92 |
+
}
|
93 |
+
item['box_center'] = self.center[idx].copy()
|
94 |
+
item['box_size'] = bbox_size
|
95 |
+
item['img_size'] = 1.0 * np.array([cvimg.shape[1], cvimg.shape[0]])
|
96 |
+
item['right'] = self.right[idx].copy()
|
97 |
+
return item
|
hamer/models/__init__.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .mano_wrapper import MANO
|
2 |
+
from .hamer import HAMER
|
3 |
+
from .discriminator import Discriminator
|
4 |
+
|
5 |
+
from ..utils.download import cache_url
|
6 |
+
from ..configs import CACHE_DIR_HAMER
|
7 |
+
|
8 |
+
|
9 |
+
def download_models(folder=CACHE_DIR_HAMER):
|
10 |
+
"""Download checkpoints and files for running inference.
|
11 |
+
"""
|
12 |
+
import os
|
13 |
+
os.makedirs(folder, exist_ok=True)
|
14 |
+
download_files = {
|
15 |
+
"hamer_data.tar.gz" : ["https://people.eecs.berkeley.edu/~jathushan/projects/4dhumans/hamer_data.tar.gz", folder],
|
16 |
+
}
|
17 |
+
|
18 |
+
for file_name, url in download_files.items():
|
19 |
+
output_path = os.path.join(url[1], file_name)
|
20 |
+
if not os.path.exists(output_path):
|
21 |
+
print("Downloading file: " + file_name)
|
22 |
+
# output = gdown.cached_download(url[0], output_path, fuzzy=True)
|
23 |
+
output = cache_url(url[0], output_path)
|
24 |
+
assert os.path.exists(output_path), f"{output} does not exist"
|
25 |
+
|
26 |
+
# if ends with tar.gz, tar -xzf
|
27 |
+
if file_name.endswith(".tar.gz"):
|
28 |
+
print("Extracting file: " + file_name)
|
29 |
+
os.system("tar -xvf " + output_path + " -C " + url[1])
|
30 |
+
|
31 |
+
DEFAULT_CHECKPOINT=f'{CACHE_DIR_HAMER}/hamer_ckpts/checkpoints/hamer.ckpt'
|
32 |
+
def load_hamer(checkpoint_path=DEFAULT_CHECKPOINT):
|
33 |
+
from pathlib import Path
|
34 |
+
from ..configs import get_config
|
35 |
+
model_cfg = str(Path(checkpoint_path).parent.parent / 'model_config.yaml')
|
36 |
+
model_cfg = get_config(model_cfg, update_cachedir=True)
|
37 |
+
|
38 |
+
# Override some config values, to crop bbox correctly
|
39 |
+
if (model_cfg.MODEL.BACKBONE.TYPE == 'vit') and ('BBOX_SHAPE' not in model_cfg.MODEL):
|
40 |
+
model_cfg.defrost()
|
41 |
+
assert model_cfg.MODEL.IMAGE_SIZE == 256, f"MODEL.IMAGE_SIZE ({model_cfg.MODEL.IMAGE_SIZE}) should be 256 for ViT backbone"
|
42 |
+
model_cfg.MODEL.BBOX_SHAPE = [192,256]
|
43 |
+
model_cfg.freeze()
|
44 |
+
|
45 |
+
model = HAMER.load_from_checkpoint(checkpoint_path, strict=False, cfg=model_cfg)
|
46 |
+
return model, model_cfg
|
hamer/models/backbones/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .vit import vit
|
2 |
+
|
3 |
+
def create_backbone(cfg):
|
4 |
+
if cfg.MODEL.BACKBONE.TYPE == 'vit':
|
5 |
+
return vit(cfg)
|
6 |
+
else:
|
7 |
+
raise NotImplementedError('Backbone type is not implemented')
|
hamer/models/backbones/vit.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) OpenMMLab. All rights reserved.
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from functools import partial
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torch.utils.checkpoint as checkpoint
|
9 |
+
|
10 |
+
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
11 |
+
|
12 |
+
def vit(cfg):
|
13 |
+
return ViT(
|
14 |
+
img_size=(256, 192),
|
15 |
+
patch_size=16,
|
16 |
+
embed_dim=1280,
|
17 |
+
depth=32,
|
18 |
+
num_heads=16,
|
19 |
+
ratio=1,
|
20 |
+
use_checkpoint=False,
|
21 |
+
mlp_ratio=4,
|
22 |
+
qkv_bias=True,
|
23 |
+
drop_path_rate=0.55,
|
24 |
+
)
|
25 |
+
|
26 |
+
def get_abs_pos(abs_pos, h, w, ori_h, ori_w, has_cls_token=True):
|
27 |
+
"""
|
28 |
+
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token
|
29 |
+
dimension for the original embeddings.
|
30 |
+
Args:
|
31 |
+
abs_pos (Tensor): absolute positional embeddings with (1, num_position, C).
|
32 |
+
has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token.
|
33 |
+
hw (Tuple): size of input image tokens.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
Absolute positional embeddings after processing with shape (1, H, W, C)
|
37 |
+
"""
|
38 |
+
cls_token = None
|
39 |
+
B, L, C = abs_pos.shape
|
40 |
+
if has_cls_token:
|
41 |
+
cls_token = abs_pos[:, 0:1]
|
42 |
+
abs_pos = abs_pos[:, 1:]
|
43 |
+
|
44 |
+
if ori_h != h or ori_w != w:
|
45 |
+
new_abs_pos = F.interpolate(
|
46 |
+
abs_pos.reshape(1, ori_h, ori_w, -1).permute(0, 3, 1, 2),
|
47 |
+
size=(h, w),
|
48 |
+
mode="bicubic",
|
49 |
+
align_corners=False,
|
50 |
+
).permute(0, 2, 3, 1).reshape(B, -1, C)
|
51 |
+
|
52 |
+
else:
|
53 |
+
new_abs_pos = abs_pos
|
54 |
+
|
55 |
+
if cls_token is not None:
|
56 |
+
new_abs_pos = torch.cat([cls_token, new_abs_pos], dim=1)
|
57 |
+
return new_abs_pos
|
58 |
+
|
59 |
+
class DropPath(nn.Module):
|
60 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
61 |
+
"""
|
62 |
+
def __init__(self, drop_prob=None):
|
63 |
+
super(DropPath, self).__init__()
|
64 |
+
self.drop_prob = drop_prob
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
return drop_path(x, self.drop_prob, self.training)
|
68 |
+
|
69 |
+
def extra_repr(self):
|
70 |
+
return 'p={}'.format(self.drop_prob)
|
71 |
+
|
72 |
+
class Mlp(nn.Module):
|
73 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
74 |
+
super().__init__()
|
75 |
+
out_features = out_features or in_features
|
76 |
+
hidden_features = hidden_features or in_features
|
77 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
78 |
+
self.act = act_layer()
|
79 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
80 |
+
self.drop = nn.Dropout(drop)
|
81 |
+
|
82 |
+
def forward(self, x):
|
83 |
+
x = self.fc1(x)
|
84 |
+
x = self.act(x)
|
85 |
+
x = self.fc2(x)
|
86 |
+
x = self.drop(x)
|
87 |
+
return x
|
88 |
+
|
89 |
+
class Attention(nn.Module):
|
90 |
+
def __init__(
|
91 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
92 |
+
proj_drop=0., attn_head_dim=None,):
|
93 |
+
super().__init__()
|
94 |
+
self.num_heads = num_heads
|
95 |
+
head_dim = dim // num_heads
|
96 |
+
self.dim = dim
|
97 |
+
|
98 |
+
if attn_head_dim is not None:
|
99 |
+
head_dim = attn_head_dim
|
100 |
+
all_head_dim = head_dim * self.num_heads
|
101 |
+
|
102 |
+
self.scale = qk_scale or head_dim ** -0.5
|
103 |
+
|
104 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=qkv_bias)
|
105 |
+
|
106 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
107 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
108 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
B, N, C = x.shape
|
112 |
+
qkv = self.qkv(x)
|
113 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
114 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
115 |
+
|
116 |
+
q = q * self.scale
|
117 |
+
attn = (q @ k.transpose(-2, -1))
|
118 |
+
|
119 |
+
attn = attn.softmax(dim=-1)
|
120 |
+
attn = self.attn_drop(attn)
|
121 |
+
|
122 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
123 |
+
x = self.proj(x)
|
124 |
+
x = self.proj_drop(x)
|
125 |
+
|
126 |
+
return x
|
127 |
+
|
128 |
+
class Block(nn.Module):
|
129 |
+
|
130 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None,
|
131 |
+
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU,
|
132 |
+
norm_layer=nn.LayerNorm, attn_head_dim=None
|
133 |
+
):
|
134 |
+
super().__init__()
|
135 |
+
|
136 |
+
self.norm1 = norm_layer(dim)
|
137 |
+
self.attn = Attention(
|
138 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
139 |
+
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim
|
140 |
+
)
|
141 |
+
|
142 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
143 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
144 |
+
self.norm2 = norm_layer(dim)
|
145 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
146 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
147 |
+
|
148 |
+
def forward(self, x):
|
149 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
150 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
151 |
+
return x
|
152 |
+
|
153 |
+
|
154 |
+
class PatchEmbed(nn.Module):
|
155 |
+
""" Image to Patch Embedding
|
156 |
+
"""
|
157 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, ratio=1):
|
158 |
+
super().__init__()
|
159 |
+
img_size = to_2tuple(img_size)
|
160 |
+
patch_size = to_2tuple(patch_size)
|
161 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (ratio ** 2)
|
162 |
+
self.patch_shape = (int(img_size[0] // patch_size[0] * ratio), int(img_size[1] // patch_size[1] * ratio))
|
163 |
+
self.origin_patch_shape = (int(img_size[0] // patch_size[0]), int(img_size[1] // patch_size[1]))
|
164 |
+
self.img_size = img_size
|
165 |
+
self.patch_size = patch_size
|
166 |
+
self.num_patches = num_patches
|
167 |
+
|
168 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=(patch_size[0] // ratio), padding=4 + 2 * (ratio//2-1))
|
169 |
+
|
170 |
+
def forward(self, x, **kwargs):
|
171 |
+
B, C, H, W = x.shape
|
172 |
+
x = self.proj(x)
|
173 |
+
Hp, Wp = x.shape[2], x.shape[3]
|
174 |
+
|
175 |
+
x = x.flatten(2).transpose(1, 2)
|
176 |
+
return x, (Hp, Wp)
|
177 |
+
|
178 |
+
|
179 |
+
class HybridEmbed(nn.Module):
|
180 |
+
""" CNN Feature Map Embedding
|
181 |
+
Extract feature map from CNN, flatten, project to embedding dim.
|
182 |
+
"""
|
183 |
+
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
|
184 |
+
super().__init__()
|
185 |
+
assert isinstance(backbone, nn.Module)
|
186 |
+
img_size = to_2tuple(img_size)
|
187 |
+
self.img_size = img_size
|
188 |
+
self.backbone = backbone
|
189 |
+
if feature_size is None:
|
190 |
+
with torch.no_grad():
|
191 |
+
training = backbone.training
|
192 |
+
if training:
|
193 |
+
backbone.eval()
|
194 |
+
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
|
195 |
+
feature_size = o.shape[-2:]
|
196 |
+
feature_dim = o.shape[1]
|
197 |
+
backbone.train(training)
|
198 |
+
else:
|
199 |
+
feature_size = to_2tuple(feature_size)
|
200 |
+
feature_dim = self.backbone.feature_info.channels()[-1]
|
201 |
+
self.num_patches = feature_size[0] * feature_size[1]
|
202 |
+
self.proj = nn.Linear(feature_dim, embed_dim)
|
203 |
+
|
204 |
+
def forward(self, x):
|
205 |
+
x = self.backbone(x)[-1]
|
206 |
+
x = x.flatten(2).transpose(1, 2)
|
207 |
+
x = self.proj(x)
|
208 |
+
return x
|
209 |
+
|
210 |
+
|
211 |
+
class ViT(nn.Module):
|
212 |
+
|
213 |
+
def __init__(self,
|
214 |
+
img_size=224, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12,
|
215 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
216 |
+
drop_path_rate=0., hybrid_backbone=None, norm_layer=None, use_checkpoint=False,
|
217 |
+
frozen_stages=-1, ratio=1, last_norm=True,
|
218 |
+
patch_padding='pad', freeze_attn=False, freeze_ffn=False,
|
219 |
+
):
|
220 |
+
# Protect mutable default arguments
|
221 |
+
super(ViT, self).__init__()
|
222 |
+
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
223 |
+
self.num_classes = num_classes
|
224 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
225 |
+
self.frozen_stages = frozen_stages
|
226 |
+
self.use_checkpoint = use_checkpoint
|
227 |
+
self.patch_padding = patch_padding
|
228 |
+
self.freeze_attn = freeze_attn
|
229 |
+
self.freeze_ffn = freeze_ffn
|
230 |
+
self.depth = depth
|
231 |
+
|
232 |
+
if hybrid_backbone is not None:
|
233 |
+
self.patch_embed = HybridEmbed(
|
234 |
+
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
|
235 |
+
else:
|
236 |
+
self.patch_embed = PatchEmbed(
|
237 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ratio=ratio)
|
238 |
+
num_patches = self.patch_embed.num_patches
|
239 |
+
|
240 |
+
# since the pretraining model has class token
|
241 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
242 |
+
|
243 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
244 |
+
|
245 |
+
self.blocks = nn.ModuleList([
|
246 |
+
Block(
|
247 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
248 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
249 |
+
)
|
250 |
+
for i in range(depth)])
|
251 |
+
|
252 |
+
self.last_norm = norm_layer(embed_dim) if last_norm else nn.Identity()
|
253 |
+
|
254 |
+
if self.pos_embed is not None:
|
255 |
+
trunc_normal_(self.pos_embed, std=.02)
|
256 |
+
|
257 |
+
self._freeze_stages()
|
258 |
+
|
259 |
+
def _freeze_stages(self):
|
260 |
+
"""Freeze parameters."""
|
261 |
+
if self.frozen_stages >= 0:
|
262 |
+
self.patch_embed.eval()
|
263 |
+
for param in self.patch_embed.parameters():
|
264 |
+
param.requires_grad = False
|
265 |
+
|
266 |
+
for i in range(1, self.frozen_stages + 1):
|
267 |
+
m = self.blocks[i]
|
268 |
+
m.eval()
|
269 |
+
for param in m.parameters():
|
270 |
+
param.requires_grad = False
|
271 |
+
|
272 |
+
if self.freeze_attn:
|
273 |
+
for i in range(0, self.depth):
|
274 |
+
m = self.blocks[i]
|
275 |
+
m.attn.eval()
|
276 |
+
m.norm1.eval()
|
277 |
+
for param in m.attn.parameters():
|
278 |
+
param.requires_grad = False
|
279 |
+
for param in m.norm1.parameters():
|
280 |
+
param.requires_grad = False
|
281 |
+
|
282 |
+
if self.freeze_ffn:
|
283 |
+
self.pos_embed.requires_grad = False
|
284 |
+
self.patch_embed.eval()
|
285 |
+
for param in self.patch_embed.parameters():
|
286 |
+
param.requires_grad = False
|
287 |
+
for i in range(0, self.depth):
|
288 |
+
m = self.blocks[i]
|
289 |
+
m.mlp.eval()
|
290 |
+
m.norm2.eval()
|
291 |
+
for param in m.mlp.parameters():
|
292 |
+
param.requires_grad = False
|
293 |
+
for param in m.norm2.parameters():
|
294 |
+
param.requires_grad = False
|
295 |
+
|
296 |
+
def init_weights(self):
|
297 |
+
"""Initialize the weights in backbone.
|
298 |
+
Args:
|
299 |
+
pretrained (str, optional): Path to pre-trained weights.
|
300 |
+
Defaults to None.
|
301 |
+
"""
|
302 |
+
def _init_weights(m):
|
303 |
+
if isinstance(m, nn.Linear):
|
304 |
+
trunc_normal_(m.weight, std=.02)
|
305 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
306 |
+
nn.init.constant_(m.bias, 0)
|
307 |
+
elif isinstance(m, nn.LayerNorm):
|
308 |
+
nn.init.constant_(m.bias, 0)
|
309 |
+
nn.init.constant_(m.weight, 1.0)
|
310 |
+
|
311 |
+
self.apply(_init_weights)
|
312 |
+
|
313 |
+
def get_num_layers(self):
|
314 |
+
return len(self.blocks)
|
315 |
+
|
316 |
+
@torch.jit.ignore
|
317 |
+
def no_weight_decay(self):
|
318 |
+
return {'pos_embed', 'cls_token'}
|
319 |
+
|
320 |
+
def forward_features(self, x):
|
321 |
+
B, C, H, W = x.shape
|
322 |
+
x, (Hp, Wp) = self.patch_embed(x)
|
323 |
+
|
324 |
+
if self.pos_embed is not None:
|
325 |
+
# fit for multiple GPU training
|
326 |
+
# since the first element for pos embed (sin-cos manner) is zero, it will cause no difference
|
327 |
+
x = x + self.pos_embed[:, 1:] + self.pos_embed[:, :1]
|
328 |
+
|
329 |
+
for blk in self.blocks:
|
330 |
+
if self.use_checkpoint:
|
331 |
+
x = checkpoint.checkpoint(blk, x)
|
332 |
+
else:
|
333 |
+
x = blk(x)
|
334 |
+
|
335 |
+
x = self.last_norm(x)
|
336 |
+
|
337 |
+
xp = x.permute(0, 2, 1).reshape(B, -1, Hp, Wp).contiguous()
|
338 |
+
|
339 |
+
return xp
|
340 |
+
|
341 |
+
def forward(self, x):
|
342 |
+
x = self.forward_features(x)
|
343 |
+
return x
|
344 |
+
|
345 |
+
def train(self, mode=True):
|
346 |
+
"""Convert the model into training mode."""
|
347 |
+
super().train(mode)
|
348 |
+
self._freeze_stages()
|
hamer/models/components/__init__.py
ADDED
File without changes
|
hamer/models/components/pose_transformer.py
ADDED
@@ -0,0 +1,358 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inspect import isfunction
|
2 |
+
from typing import Callable, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import rearrange
|
6 |
+
from einops.layers.torch import Rearrange
|
7 |
+
from torch import nn
|
8 |
+
|
9 |
+
from .t_cond_mlp import (
|
10 |
+
AdaptiveLayerNorm1D,
|
11 |
+
FrequencyEmbedder,
|
12 |
+
normalization_layer,
|
13 |
+
)
|
14 |
+
# from .vit import Attention, FeedForward
|
15 |
+
|
16 |
+
|
17 |
+
def exists(val):
|
18 |
+
return val is not None
|
19 |
+
|
20 |
+
|
21 |
+
def default(val, d):
|
22 |
+
if exists(val):
|
23 |
+
return val
|
24 |
+
return d() if isfunction(d) else d
|
25 |
+
|
26 |
+
|
27 |
+
class PreNorm(nn.Module):
|
28 |
+
def __init__(self, dim: int, fn: Callable, norm: str = "layer", norm_cond_dim: int = -1):
|
29 |
+
super().__init__()
|
30 |
+
self.norm = normalization_layer(norm, dim, norm_cond_dim)
|
31 |
+
self.fn = fn
|
32 |
+
|
33 |
+
def forward(self, x: torch.Tensor, *args, **kwargs):
|
34 |
+
if isinstance(self.norm, AdaptiveLayerNorm1D):
|
35 |
+
return self.fn(self.norm(x, *args), **kwargs)
|
36 |
+
else:
|
37 |
+
return self.fn(self.norm(x), **kwargs)
|
38 |
+
|
39 |
+
|
40 |
+
class FeedForward(nn.Module):
|
41 |
+
def __init__(self, dim, hidden_dim, dropout=0.0):
|
42 |
+
super().__init__()
|
43 |
+
self.net = nn.Sequential(
|
44 |
+
nn.Linear(dim, hidden_dim),
|
45 |
+
nn.GELU(),
|
46 |
+
nn.Dropout(dropout),
|
47 |
+
nn.Linear(hidden_dim, dim),
|
48 |
+
nn.Dropout(dropout),
|
49 |
+
)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
return self.net(x)
|
53 |
+
|
54 |
+
|
55 |
+
class Attention(nn.Module):
|
56 |
+
def __init__(self, dim, heads=8, dim_head=64, dropout=0.0):
|
57 |
+
super().__init__()
|
58 |
+
inner_dim = dim_head * heads
|
59 |
+
project_out = not (heads == 1 and dim_head == dim)
|
60 |
+
|
61 |
+
self.heads = heads
|
62 |
+
self.scale = dim_head**-0.5
|
63 |
+
|
64 |
+
self.attend = nn.Softmax(dim=-1)
|
65 |
+
self.dropout = nn.Dropout(dropout)
|
66 |
+
|
67 |
+
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
|
68 |
+
|
69 |
+
self.to_out = (
|
70 |
+
nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
|
71 |
+
if project_out
|
72 |
+
else nn.Identity()
|
73 |
+
)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
qkv = self.to_qkv(x).chunk(3, dim=-1)
|
77 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), qkv)
|
78 |
+
|
79 |
+
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
80 |
+
|
81 |
+
attn = self.attend(dots)
|
82 |
+
attn = self.dropout(attn)
|
83 |
+
|
84 |
+
out = torch.matmul(attn, v)
|
85 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
86 |
+
return self.to_out(out)
|
87 |
+
|
88 |
+
|
89 |
+
class CrossAttention(nn.Module):
|
90 |
+
def __init__(self, dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
|
91 |
+
super().__init__()
|
92 |
+
inner_dim = dim_head * heads
|
93 |
+
project_out = not (heads == 1 and dim_head == dim)
|
94 |
+
|
95 |
+
self.heads = heads
|
96 |
+
self.scale = dim_head**-0.5
|
97 |
+
|
98 |
+
self.attend = nn.Softmax(dim=-1)
|
99 |
+
self.dropout = nn.Dropout(dropout)
|
100 |
+
|
101 |
+
context_dim = default(context_dim, dim)
|
102 |
+
self.to_kv = nn.Linear(context_dim, inner_dim * 2, bias=False)
|
103 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
104 |
+
|
105 |
+
self.to_out = (
|
106 |
+
nn.Sequential(nn.Linear(inner_dim, dim), nn.Dropout(dropout))
|
107 |
+
if project_out
|
108 |
+
else nn.Identity()
|
109 |
+
)
|
110 |
+
|
111 |
+
def forward(self, x, context=None):
|
112 |
+
context = default(context, x)
|
113 |
+
k, v = self.to_kv(context).chunk(2, dim=-1)
|
114 |
+
q = self.to_q(x)
|
115 |
+
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=self.heads), [q, k, v])
|
116 |
+
|
117 |
+
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
|
118 |
+
|
119 |
+
attn = self.attend(dots)
|
120 |
+
attn = self.dropout(attn)
|
121 |
+
|
122 |
+
out = torch.matmul(attn, v)
|
123 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
124 |
+
return self.to_out(out)
|
125 |
+
|
126 |
+
|
127 |
+
class Transformer(nn.Module):
|
128 |
+
def __init__(
|
129 |
+
self,
|
130 |
+
dim: int,
|
131 |
+
depth: int,
|
132 |
+
heads: int,
|
133 |
+
dim_head: int,
|
134 |
+
mlp_dim: int,
|
135 |
+
dropout: float = 0.0,
|
136 |
+
norm: str = "layer",
|
137 |
+
norm_cond_dim: int = -1,
|
138 |
+
):
|
139 |
+
super().__init__()
|
140 |
+
self.layers = nn.ModuleList([])
|
141 |
+
for _ in range(depth):
|
142 |
+
sa = Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)
|
143 |
+
ff = FeedForward(dim, mlp_dim, dropout=dropout)
|
144 |
+
self.layers.append(
|
145 |
+
nn.ModuleList(
|
146 |
+
[
|
147 |
+
PreNorm(dim, sa, norm=norm, norm_cond_dim=norm_cond_dim),
|
148 |
+
PreNorm(dim, ff, norm=norm, norm_cond_dim=norm_cond_dim),
|
149 |
+
]
|
150 |
+
)
|
151 |
+
)
|
152 |
+
|
153 |
+
def forward(self, x: torch.Tensor, *args):
|
154 |
+
for attn, ff in self.layers:
|
155 |
+
x = attn(x, *args) + x
|
156 |
+
x = ff(x, *args) + x
|
157 |
+
return x
|
158 |
+
|
159 |
+
|
160 |
+
class TransformerCrossAttn(nn.Module):
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
dim: int,
|
164 |
+
depth: int,
|
165 |
+
heads: int,
|
166 |
+
dim_head: int,
|
167 |
+
mlp_dim: int,
|
168 |
+
dropout: float = 0.0,
|
169 |
+
norm: str = "layer",
|
170 |
+
norm_cond_dim: int = -1,
|
171 |
+
context_dim: Optional[int] = None,
|
172 |
+
):
|
173 |
+
super().__init__()
|
174 |
+
self.layers = nn.ModuleList([])
|
175 |
+
for _ in range(depth):
|
176 |
+
sa = Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout)
|
177 |
+
ca = CrossAttention(
|
178 |
+
dim, context_dim=context_dim, heads=heads, dim_head=dim_head, dropout=dropout
|
179 |
+
)
|
180 |
+
ff = FeedForward(dim, mlp_dim, dropout=dropout)
|
181 |
+
self.layers.append(
|
182 |
+
nn.ModuleList(
|
183 |
+
[
|
184 |
+
PreNorm(dim, sa, norm=norm, norm_cond_dim=norm_cond_dim),
|
185 |
+
PreNorm(dim, ca, norm=norm, norm_cond_dim=norm_cond_dim),
|
186 |
+
PreNorm(dim, ff, norm=norm, norm_cond_dim=norm_cond_dim),
|
187 |
+
]
|
188 |
+
)
|
189 |
+
)
|
190 |
+
|
191 |
+
def forward(self, x: torch.Tensor, *args, context=None, context_list=None):
|
192 |
+
if context_list is None:
|
193 |
+
context_list = [context] * len(self.layers)
|
194 |
+
if len(context_list) != len(self.layers):
|
195 |
+
raise ValueError(f"len(context_list) != len(self.layers) ({len(context_list)} != {len(self.layers)})")
|
196 |
+
|
197 |
+
for i, (self_attn, cross_attn, ff) in enumerate(self.layers):
|
198 |
+
x = self_attn(x, *args) + x
|
199 |
+
x = cross_attn(x, *args, context=context_list[i]) + x
|
200 |
+
x = ff(x, *args) + x
|
201 |
+
return x
|
202 |
+
|
203 |
+
|
204 |
+
class DropTokenDropout(nn.Module):
|
205 |
+
def __init__(self, p: float = 0.1):
|
206 |
+
super().__init__()
|
207 |
+
if p < 0 or p > 1:
|
208 |
+
raise ValueError(
|
209 |
+
"dropout probability has to be between 0 and 1, " "but got {}".format(p)
|
210 |
+
)
|
211 |
+
self.p = p
|
212 |
+
|
213 |
+
def forward(self, x: torch.Tensor):
|
214 |
+
# x: (batch_size, seq_len, dim)
|
215 |
+
if self.training and self.p > 0:
|
216 |
+
zero_mask = torch.full_like(x[0, :, 0], self.p).bernoulli().bool()
|
217 |
+
# TODO: permutation idx for each batch using torch.argsort
|
218 |
+
if zero_mask.any():
|
219 |
+
x = x[:, ~zero_mask, :]
|
220 |
+
return x
|
221 |
+
|
222 |
+
|
223 |
+
class ZeroTokenDropout(nn.Module):
|
224 |
+
def __init__(self, p: float = 0.1):
|
225 |
+
super().__init__()
|
226 |
+
if p < 0 or p > 1:
|
227 |
+
raise ValueError(
|
228 |
+
"dropout probability has to be between 0 and 1, " "but got {}".format(p)
|
229 |
+
)
|
230 |
+
self.p = p
|
231 |
+
|
232 |
+
def forward(self, x: torch.Tensor):
|
233 |
+
# x: (batch_size, seq_len, dim)
|
234 |
+
if self.training and self.p > 0:
|
235 |
+
zero_mask = torch.full_like(x[:, :, 0], self.p).bernoulli().bool()
|
236 |
+
# Zero-out the masked tokens
|
237 |
+
x[zero_mask, :] = 0
|
238 |
+
return x
|
239 |
+
|
240 |
+
|
241 |
+
class TransformerEncoder(nn.Module):
|
242 |
+
def __init__(
|
243 |
+
self,
|
244 |
+
num_tokens: int,
|
245 |
+
token_dim: int,
|
246 |
+
dim: int,
|
247 |
+
depth: int,
|
248 |
+
heads: int,
|
249 |
+
mlp_dim: int,
|
250 |
+
dim_head: int = 64,
|
251 |
+
dropout: float = 0.0,
|
252 |
+
emb_dropout: float = 0.0,
|
253 |
+
emb_dropout_type: str = "drop",
|
254 |
+
emb_dropout_loc: str = "token",
|
255 |
+
norm: str = "layer",
|
256 |
+
norm_cond_dim: int = -1,
|
257 |
+
token_pe_numfreq: int = -1,
|
258 |
+
):
|
259 |
+
super().__init__()
|
260 |
+
if token_pe_numfreq > 0:
|
261 |
+
token_dim_new = token_dim * (2 * token_pe_numfreq + 1)
|
262 |
+
self.to_token_embedding = nn.Sequential(
|
263 |
+
Rearrange("b n d -> (b n) d", n=num_tokens, d=token_dim),
|
264 |
+
FrequencyEmbedder(token_pe_numfreq, token_pe_numfreq - 1),
|
265 |
+
Rearrange("(b n) d -> b n d", n=num_tokens, d=token_dim_new),
|
266 |
+
nn.Linear(token_dim_new, dim),
|
267 |
+
)
|
268 |
+
else:
|
269 |
+
self.to_token_embedding = nn.Linear(token_dim, dim)
|
270 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, num_tokens, dim))
|
271 |
+
if emb_dropout_type == "drop":
|
272 |
+
self.dropout = DropTokenDropout(emb_dropout)
|
273 |
+
elif emb_dropout_type == "zero":
|
274 |
+
self.dropout = ZeroTokenDropout(emb_dropout)
|
275 |
+
else:
|
276 |
+
raise ValueError(f"Unknown emb_dropout_type: {emb_dropout_type}")
|
277 |
+
self.emb_dropout_loc = emb_dropout_loc
|
278 |
+
|
279 |
+
self.transformer = Transformer(
|
280 |
+
dim, depth, heads, dim_head, mlp_dim, dropout, norm=norm, norm_cond_dim=norm_cond_dim
|
281 |
+
)
|
282 |
+
|
283 |
+
def forward(self, inp: torch.Tensor, *args, **kwargs):
|
284 |
+
x = inp
|
285 |
+
|
286 |
+
if self.emb_dropout_loc == "input":
|
287 |
+
x = self.dropout(x)
|
288 |
+
x = self.to_token_embedding(x)
|
289 |
+
|
290 |
+
if self.emb_dropout_loc == "token":
|
291 |
+
x = self.dropout(x)
|
292 |
+
b, n, _ = x.shape
|
293 |
+
x += self.pos_embedding[:, :n]
|
294 |
+
|
295 |
+
if self.emb_dropout_loc == "token_afterpos":
|
296 |
+
x = self.dropout(x)
|
297 |
+
x = self.transformer(x, *args)
|
298 |
+
return x
|
299 |
+
|
300 |
+
|
301 |
+
class TransformerDecoder(nn.Module):
|
302 |
+
def __init__(
|
303 |
+
self,
|
304 |
+
num_tokens: int,
|
305 |
+
token_dim: int,
|
306 |
+
dim: int,
|
307 |
+
depth: int,
|
308 |
+
heads: int,
|
309 |
+
mlp_dim: int,
|
310 |
+
dim_head: int = 64,
|
311 |
+
dropout: float = 0.0,
|
312 |
+
emb_dropout: float = 0.0,
|
313 |
+
emb_dropout_type: str = 'drop',
|
314 |
+
norm: str = "layer",
|
315 |
+
norm_cond_dim: int = -1,
|
316 |
+
context_dim: Optional[int] = None,
|
317 |
+
skip_token_embedding: bool = False,
|
318 |
+
):
|
319 |
+
super().__init__()
|
320 |
+
if not skip_token_embedding:
|
321 |
+
self.to_token_embedding = nn.Linear(token_dim, dim)
|
322 |
+
else:
|
323 |
+
self.to_token_embedding = nn.Identity()
|
324 |
+
if token_dim != dim:
|
325 |
+
raise ValueError(
|
326 |
+
f"token_dim ({token_dim}) != dim ({dim}) when skip_token_embedding is True"
|
327 |
+
)
|
328 |
+
|
329 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, num_tokens, dim))
|
330 |
+
if emb_dropout_type == "drop":
|
331 |
+
self.dropout = DropTokenDropout(emb_dropout)
|
332 |
+
elif emb_dropout_type == "zero":
|
333 |
+
self.dropout = ZeroTokenDropout(emb_dropout)
|
334 |
+
elif emb_dropout_type == "normal":
|
335 |
+
self.dropout = nn.Dropout(emb_dropout)
|
336 |
+
|
337 |
+
self.transformer = TransformerCrossAttn(
|
338 |
+
dim,
|
339 |
+
depth,
|
340 |
+
heads,
|
341 |
+
dim_head,
|
342 |
+
mlp_dim,
|
343 |
+
dropout,
|
344 |
+
norm=norm,
|
345 |
+
norm_cond_dim=norm_cond_dim,
|
346 |
+
context_dim=context_dim,
|
347 |
+
)
|
348 |
+
|
349 |
+
def forward(self, inp: torch.Tensor, *args, context=None, context_list=None):
|
350 |
+
x = self.to_token_embedding(inp)
|
351 |
+
b, n, _ = x.shape
|
352 |
+
|
353 |
+
x = self.dropout(x)
|
354 |
+
x += self.pos_embedding[:, :n]
|
355 |
+
|
356 |
+
x = self.transformer(x, *args, context=context, context_list=context_list)
|
357 |
+
return x
|
358 |
+
|
hamer/models/components/t_cond_mlp.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
from typing import List, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
|
6 |
+
|
7 |
+
class AdaptiveLayerNorm1D(torch.nn.Module):
|
8 |
+
def __init__(self, data_dim: int, norm_cond_dim: int):
|
9 |
+
super().__init__()
|
10 |
+
if data_dim <= 0:
|
11 |
+
raise ValueError(f"data_dim must be positive, but got {data_dim}")
|
12 |
+
if norm_cond_dim <= 0:
|
13 |
+
raise ValueError(f"norm_cond_dim must be positive, but got {norm_cond_dim}")
|
14 |
+
self.norm = torch.nn.LayerNorm(
|
15 |
+
data_dim
|
16 |
+
) # TODO: Check if elementwise_affine=True is correct
|
17 |
+
self.linear = torch.nn.Linear(norm_cond_dim, 2 * data_dim)
|
18 |
+
torch.nn.init.zeros_(self.linear.weight)
|
19 |
+
torch.nn.init.zeros_(self.linear.bias)
|
20 |
+
|
21 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
22 |
+
# x: (batch, ..., data_dim)
|
23 |
+
# t: (batch, norm_cond_dim)
|
24 |
+
# return: (batch, data_dim)
|
25 |
+
x = self.norm(x)
|
26 |
+
alpha, beta = self.linear(t).chunk(2, dim=-1)
|
27 |
+
|
28 |
+
# Add singleton dimensions to alpha and beta
|
29 |
+
if x.dim() > 2:
|
30 |
+
alpha = alpha.view(alpha.shape[0], *([1] * (x.dim() - 2)), alpha.shape[1])
|
31 |
+
beta = beta.view(beta.shape[0], *([1] * (x.dim() - 2)), beta.shape[1])
|
32 |
+
|
33 |
+
return x * (1 + alpha) + beta
|
34 |
+
|
35 |
+
|
36 |
+
class SequentialCond(torch.nn.Sequential):
|
37 |
+
def forward(self, input, *args, **kwargs):
|
38 |
+
for module in self:
|
39 |
+
if isinstance(module, (AdaptiveLayerNorm1D, SequentialCond, ResidualMLPBlock)):
|
40 |
+
# print(f'Passing on args to {module}', [a.shape for a in args])
|
41 |
+
input = module(input, *args, **kwargs)
|
42 |
+
else:
|
43 |
+
# print(f'Skipping passing args to {module}', [a.shape for a in args])
|
44 |
+
input = module(input)
|
45 |
+
return input
|
46 |
+
|
47 |
+
|
48 |
+
def normalization_layer(norm: Optional[str], dim: int, norm_cond_dim: int = -1):
|
49 |
+
if norm == "batch":
|
50 |
+
return torch.nn.BatchNorm1d(dim)
|
51 |
+
elif norm == "layer":
|
52 |
+
return torch.nn.LayerNorm(dim)
|
53 |
+
elif norm == "ada":
|
54 |
+
assert norm_cond_dim > 0, f"norm_cond_dim must be positive, got {norm_cond_dim}"
|
55 |
+
return AdaptiveLayerNorm1D(dim, norm_cond_dim)
|
56 |
+
elif norm is None:
|
57 |
+
return torch.nn.Identity()
|
58 |
+
else:
|
59 |
+
raise ValueError(f"Unknown norm: {norm}")
|
60 |
+
|
61 |
+
|
62 |
+
def linear_norm_activ_dropout(
|
63 |
+
input_dim: int,
|
64 |
+
output_dim: int,
|
65 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
66 |
+
bias: bool = True,
|
67 |
+
norm: Optional[str] = "layer", # Options: ada/batch/layer
|
68 |
+
dropout: float = 0.0,
|
69 |
+
norm_cond_dim: int = -1,
|
70 |
+
) -> SequentialCond:
|
71 |
+
layers = []
|
72 |
+
layers.append(torch.nn.Linear(input_dim, output_dim, bias=bias))
|
73 |
+
if norm is not None:
|
74 |
+
layers.append(normalization_layer(norm, output_dim, norm_cond_dim))
|
75 |
+
layers.append(copy.deepcopy(activation))
|
76 |
+
if dropout > 0.0:
|
77 |
+
layers.append(torch.nn.Dropout(dropout))
|
78 |
+
return SequentialCond(*layers)
|
79 |
+
|
80 |
+
|
81 |
+
def create_simple_mlp(
|
82 |
+
input_dim: int,
|
83 |
+
hidden_dims: List[int],
|
84 |
+
output_dim: int,
|
85 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
86 |
+
bias: bool = True,
|
87 |
+
norm: Optional[str] = "layer", # Options: ada/batch/layer
|
88 |
+
dropout: float = 0.0,
|
89 |
+
norm_cond_dim: int = -1,
|
90 |
+
) -> SequentialCond:
|
91 |
+
layers = []
|
92 |
+
prev_dim = input_dim
|
93 |
+
for hidden_dim in hidden_dims:
|
94 |
+
layers.extend(
|
95 |
+
linear_norm_activ_dropout(
|
96 |
+
prev_dim, hidden_dim, activation, bias, norm, dropout, norm_cond_dim
|
97 |
+
)
|
98 |
+
)
|
99 |
+
prev_dim = hidden_dim
|
100 |
+
layers.append(torch.nn.Linear(prev_dim, output_dim, bias=bias))
|
101 |
+
return SequentialCond(*layers)
|
102 |
+
|
103 |
+
|
104 |
+
class ResidualMLPBlock(torch.nn.Module):
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
input_dim: int,
|
108 |
+
hidden_dim: int,
|
109 |
+
num_hidden_layers: int,
|
110 |
+
output_dim: int,
|
111 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
112 |
+
bias: bool = True,
|
113 |
+
norm: Optional[str] = "layer", # Options: ada/batch/layer
|
114 |
+
dropout: float = 0.0,
|
115 |
+
norm_cond_dim: int = -1,
|
116 |
+
):
|
117 |
+
super().__init__()
|
118 |
+
if not (input_dim == output_dim == hidden_dim):
|
119 |
+
raise NotImplementedError(
|
120 |
+
f"input_dim {input_dim} != output_dim {output_dim} is not implemented"
|
121 |
+
)
|
122 |
+
|
123 |
+
layers = []
|
124 |
+
prev_dim = input_dim
|
125 |
+
for i in range(num_hidden_layers):
|
126 |
+
layers.append(
|
127 |
+
linear_norm_activ_dropout(
|
128 |
+
prev_dim, hidden_dim, activation, bias, norm, dropout, norm_cond_dim
|
129 |
+
)
|
130 |
+
)
|
131 |
+
prev_dim = hidden_dim
|
132 |
+
self.model = SequentialCond(*layers)
|
133 |
+
self.skip = torch.nn.Identity()
|
134 |
+
|
135 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
136 |
+
return x + self.model(x, *args, **kwargs)
|
137 |
+
|
138 |
+
|
139 |
+
class ResidualMLP(torch.nn.Module):
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
input_dim: int,
|
143 |
+
hidden_dim: int,
|
144 |
+
num_hidden_layers: int,
|
145 |
+
output_dim: int,
|
146 |
+
activation: torch.nn.Module = torch.nn.ReLU(),
|
147 |
+
bias: bool = True,
|
148 |
+
norm: Optional[str] = "layer", # Options: ada/batch/layer
|
149 |
+
dropout: float = 0.0,
|
150 |
+
num_blocks: int = 1,
|
151 |
+
norm_cond_dim: int = -1,
|
152 |
+
):
|
153 |
+
super().__init__()
|
154 |
+
self.input_dim = input_dim
|
155 |
+
self.model = SequentialCond(
|
156 |
+
linear_norm_activ_dropout(
|
157 |
+
input_dim, hidden_dim, activation, bias, norm, dropout, norm_cond_dim
|
158 |
+
),
|
159 |
+
*[
|
160 |
+
ResidualMLPBlock(
|
161 |
+
hidden_dim,
|
162 |
+
hidden_dim,
|
163 |
+
num_hidden_layers,
|
164 |
+
hidden_dim,
|
165 |
+
activation,
|
166 |
+
bias,
|
167 |
+
norm,
|
168 |
+
dropout,
|
169 |
+
norm_cond_dim,
|
170 |
+
)
|
171 |
+
for _ in range(num_blocks)
|
172 |
+
],
|
173 |
+
torch.nn.Linear(hidden_dim, output_dim, bias=bias),
|
174 |
+
)
|
175 |
+
|
176 |
+
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
177 |
+
return self.model(x, *args, **kwargs)
|
178 |
+
|
179 |
+
|
180 |
+
class FrequencyEmbedder(torch.nn.Module):
|
181 |
+
def __init__(self, num_frequencies, max_freq_log2):
|
182 |
+
super().__init__()
|
183 |
+
frequencies = 2 ** torch.linspace(0, max_freq_log2, steps=num_frequencies)
|
184 |
+
self.register_buffer("frequencies", frequencies)
|
185 |
+
|
186 |
+
def forward(self, x):
|
187 |
+
# x should be of size (N,) or (N, D)
|
188 |
+
N = x.size(0)
|
189 |
+
if x.dim() == 1: # (N,)
|
190 |
+
x = x.unsqueeze(1) # (N, D) where D=1
|
191 |
+
x_unsqueezed = x.unsqueeze(-1) # (N, D, 1)
|
192 |
+
scaled = self.frequencies.view(1, 1, -1) * x_unsqueezed # (N, D, num_frequencies)
|
193 |
+
s = torch.sin(scaled)
|
194 |
+
c = torch.cos(scaled)
|
195 |
+
embedded = torch.cat([s, c, x_unsqueezed], dim=-1).view(
|
196 |
+
N, -1
|
197 |
+
) # (N, D * 2 * num_frequencies + D)
|
198 |
+
return embedded
|
199 |
+
|
hamer/models/discriminator.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class Discriminator(nn.Module):
|
5 |
+
|
6 |
+
def __init__(self):
|
7 |
+
"""
|
8 |
+
Pose + Shape discriminator proposed in HMR
|
9 |
+
"""
|
10 |
+
super(Discriminator, self).__init__()
|
11 |
+
|
12 |
+
self.num_joints = 15
|
13 |
+
# poses_alone
|
14 |
+
self.D_conv1 = nn.Conv2d(9, 32, kernel_size=1)
|
15 |
+
nn.init.xavier_uniform_(self.D_conv1.weight)
|
16 |
+
nn.init.zeros_(self.D_conv1.bias)
|
17 |
+
self.relu = nn.ReLU(inplace=True)
|
18 |
+
self.D_conv2 = nn.Conv2d(32, 32, kernel_size=1)
|
19 |
+
nn.init.xavier_uniform_(self.D_conv2.weight)
|
20 |
+
nn.init.zeros_(self.D_conv2.bias)
|
21 |
+
pose_out = []
|
22 |
+
for i in range(self.num_joints):
|
23 |
+
pose_out_temp = nn.Linear(32, 1)
|
24 |
+
nn.init.xavier_uniform_(pose_out_temp.weight)
|
25 |
+
nn.init.zeros_(pose_out_temp.bias)
|
26 |
+
pose_out.append(pose_out_temp)
|
27 |
+
self.pose_out = nn.ModuleList(pose_out)
|
28 |
+
|
29 |
+
# betas
|
30 |
+
self.betas_fc1 = nn.Linear(10, 10)
|
31 |
+
nn.init.xavier_uniform_(self.betas_fc1.weight)
|
32 |
+
nn.init.zeros_(self.betas_fc1.bias)
|
33 |
+
self.betas_fc2 = nn.Linear(10, 5)
|
34 |
+
nn.init.xavier_uniform_(self.betas_fc2.weight)
|
35 |
+
nn.init.zeros_(self.betas_fc2.bias)
|
36 |
+
self.betas_out = nn.Linear(5, 1)
|
37 |
+
nn.init.xavier_uniform_(self.betas_out.weight)
|
38 |
+
nn.init.zeros_(self.betas_out.bias)
|
39 |
+
|
40 |
+
# poses_joint
|
41 |
+
self.D_alljoints_fc1 = nn.Linear(32*self.num_joints, 1024)
|
42 |
+
nn.init.xavier_uniform_(self.D_alljoints_fc1.weight)
|
43 |
+
nn.init.zeros_(self.D_alljoints_fc1.bias)
|
44 |
+
self.D_alljoints_fc2 = nn.Linear(1024, 1024)
|
45 |
+
nn.init.xavier_uniform_(self.D_alljoints_fc2.weight)
|
46 |
+
nn.init.zeros_(self.D_alljoints_fc2.bias)
|
47 |
+
self.D_alljoints_out = nn.Linear(1024, 1)
|
48 |
+
nn.init.xavier_uniform_(self.D_alljoints_out.weight)
|
49 |
+
nn.init.zeros_(self.D_alljoints_out.bias)
|
50 |
+
|
51 |
+
|
52 |
+
def forward(self, poses: torch.Tensor, betas: torch.Tensor) -> torch.Tensor:
|
53 |
+
"""
|
54 |
+
Forward pass of the discriminator.
|
55 |
+
Args:
|
56 |
+
poses (torch.Tensor): Tensor of shape (B, 23, 3, 3) containing a batch of MANO hand poses (excluding the global orientation).
|
57 |
+
betas (torch.Tensor): Tensor of shape (B, 10) containign a batch of MANO beta coefficients.
|
58 |
+
Returns:
|
59 |
+
torch.Tensor: Discriminator output with shape (B, 25)
|
60 |
+
"""
|
61 |
+
#import ipdb; ipdb.set_trace()
|
62 |
+
#bn = poses.shape[0]
|
63 |
+
# poses B x 207
|
64 |
+
#poses = poses.reshape(bn, -1)
|
65 |
+
# poses B x num_joints x 1 x 9
|
66 |
+
poses = poses.reshape(-1, self.num_joints, 1, 9)
|
67 |
+
bn = poses.shape[0]
|
68 |
+
# poses B x 9 x num_joints x 1
|
69 |
+
poses = poses.permute(0, 3, 1, 2).contiguous()
|
70 |
+
|
71 |
+
# poses_alone
|
72 |
+
poses = self.D_conv1(poses)
|
73 |
+
poses = self.relu(poses)
|
74 |
+
poses = self.D_conv2(poses)
|
75 |
+
poses = self.relu(poses)
|
76 |
+
|
77 |
+
poses_out = []
|
78 |
+
for i in range(self.num_joints):
|
79 |
+
poses_out_ = self.pose_out[i](poses[:, :, i, 0])
|
80 |
+
poses_out.append(poses_out_)
|
81 |
+
poses_out = torch.cat(poses_out, dim=1)
|
82 |
+
|
83 |
+
# betas
|
84 |
+
betas = self.betas_fc1(betas)
|
85 |
+
betas = self.relu(betas)
|
86 |
+
betas = self.betas_fc2(betas)
|
87 |
+
betas = self.relu(betas)
|
88 |
+
betas_out = self.betas_out(betas)
|
89 |
+
|
90 |
+
# poses_joint
|
91 |
+
poses = poses.reshape(bn,-1)
|
92 |
+
poses_all = self.D_alljoints_fc1(poses)
|
93 |
+
poses_all = self.relu(poses_all)
|
94 |
+
poses_all = self.D_alljoints_fc2(poses_all)
|
95 |
+
poses_all = self.relu(poses_all)
|
96 |
+
poses_all_out = self.D_alljoints_out(poses_all)
|
97 |
+
|
98 |
+
disc_out = torch.cat((poses_out, betas_out, poses_all_out), 1)
|
99 |
+
return disc_out
|
hamer/models/hamer.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pytorch_lightning as pl
|
3 |
+
from typing import Any, Dict, Mapping, Tuple
|
4 |
+
|
5 |
+
from yacs.config import CfgNode
|
6 |
+
|
7 |
+
from ..utils import SkeletonRenderer, MeshRenderer
|
8 |
+
from ..utils.geometry import aa_to_rotmat, perspective_projection
|
9 |
+
from ..utils.pylogger import get_pylogger
|
10 |
+
from .backbones import create_backbone
|
11 |
+
from .heads import build_mano_head
|
12 |
+
from .discriminator import Discriminator
|
13 |
+
from .losses import Keypoint3DLoss, Keypoint2DLoss, ParameterLoss
|
14 |
+
from . import MANO
|
15 |
+
|
16 |
+
log = get_pylogger(__name__)
|
17 |
+
|
18 |
+
class HAMER(pl.LightningModule):
|
19 |
+
|
20 |
+
def __init__(self, cfg: CfgNode, init_renderer: bool = False):
|
21 |
+
"""
|
22 |
+
Setup HAMER model
|
23 |
+
Args:
|
24 |
+
cfg (CfgNode): Config file as a yacs CfgNode
|
25 |
+
"""
|
26 |
+
super().__init__()
|
27 |
+
|
28 |
+
# Save hyperparameters
|
29 |
+
self.save_hyperparameters(logger=False, ignore=['init_renderer'])
|
30 |
+
|
31 |
+
self.cfg = cfg
|
32 |
+
# Create backbone feature extractor
|
33 |
+
self.backbone = create_backbone(cfg)
|
34 |
+
#if cfg.MODEL.BACKBONE.get('PRETRAINED_WEIGHTS', None):
|
35 |
+
# log.info(f'Loading backbone weights from {cfg.MODEL.BACKBONE.PRETRAINED_WEIGHTS}')
|
36 |
+
# self.backbone.load_state_dict(torch.load(cfg.MODEL.BACKBONE.PRETRAINED_WEIGHTS, map_location='cpu')['state_dict'])
|
37 |
+
|
38 |
+
# Create MANO head
|
39 |
+
self.mano_head = build_mano_head(cfg)
|
40 |
+
|
41 |
+
# Create discriminator
|
42 |
+
if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
|
43 |
+
self.discriminator = Discriminator()
|
44 |
+
|
45 |
+
# Define loss functions
|
46 |
+
self.keypoint_3d_loss = Keypoint3DLoss(loss_type='l1')
|
47 |
+
self.keypoint_2d_loss = Keypoint2DLoss(loss_type='l1')
|
48 |
+
self.mano_parameter_loss = ParameterLoss()
|
49 |
+
|
50 |
+
# Instantiate MANO model
|
51 |
+
mano_cfg = {k.lower(): v for k,v in dict(cfg.MANO).items()}
|
52 |
+
self.mano = MANO(**mano_cfg)
|
53 |
+
|
54 |
+
# Buffer that shows whetheer we need to initialize ActNorm layers
|
55 |
+
self.register_buffer('initialized', torch.tensor(False))
|
56 |
+
# Setup renderer for visualization
|
57 |
+
if init_renderer:
|
58 |
+
self.renderer = SkeletonRenderer(self.cfg)
|
59 |
+
self.mesh_renderer = MeshRenderer(self.cfg, faces=self.mano.faces)
|
60 |
+
else:
|
61 |
+
self.renderer = None
|
62 |
+
self.mesh_renderer = None
|
63 |
+
|
64 |
+
# Disable automatic optimization since we use adversarial training
|
65 |
+
self.automatic_optimization = False
|
66 |
+
|
67 |
+
def on_after_backward(self):
|
68 |
+
for name, param in self.named_parameters():
|
69 |
+
if param.grad is None:
|
70 |
+
print(param.shape)
|
71 |
+
print(name)
|
72 |
+
|
73 |
+
def get_parameters(self):
|
74 |
+
all_params = list(self.mano_head.parameters())
|
75 |
+
all_params += list(self.backbone.parameters())
|
76 |
+
return all_params
|
77 |
+
|
78 |
+
def configure_optimizers(self) -> Tuple[torch.optim.Optimizer, torch.optim.Optimizer]:
|
79 |
+
"""
|
80 |
+
Setup model and distriminator Optimizers
|
81 |
+
Returns:
|
82 |
+
Tuple[torch.optim.Optimizer, torch.optim.Optimizer]: Model and discriminator optimizers
|
83 |
+
"""
|
84 |
+
param_groups = [{'params': filter(lambda p: p.requires_grad, self.get_parameters()), 'lr': self.cfg.TRAIN.LR}]
|
85 |
+
|
86 |
+
optimizer = torch.optim.AdamW(params=param_groups,
|
87 |
+
# lr=self.cfg.TRAIN.LR,
|
88 |
+
weight_decay=self.cfg.TRAIN.WEIGHT_DECAY)
|
89 |
+
optimizer_disc = torch.optim.AdamW(params=self.discriminator.parameters(),
|
90 |
+
lr=self.cfg.TRAIN.LR,
|
91 |
+
weight_decay=self.cfg.TRAIN.WEIGHT_DECAY)
|
92 |
+
|
93 |
+
return optimizer, optimizer_disc
|
94 |
+
|
95 |
+
def forward_step(self, batch: Dict, train: bool = False) -> Dict:
|
96 |
+
"""
|
97 |
+
Run a forward step of the network
|
98 |
+
Args:
|
99 |
+
batch (Dict): Dictionary containing batch data
|
100 |
+
train (bool): Flag indicating whether it is training or validation mode
|
101 |
+
Returns:
|
102 |
+
Dict: Dictionary containing the regression output
|
103 |
+
"""
|
104 |
+
|
105 |
+
# Use RGB image as input
|
106 |
+
x = batch['img']
|
107 |
+
batch_size = x.shape[0]
|
108 |
+
|
109 |
+
# Compute conditioning features using the backbone
|
110 |
+
# if using ViT backbone, we need to use a different aspect ratio
|
111 |
+
conditioning_feats = self.backbone(x[:,:,:,32:-32])
|
112 |
+
|
113 |
+
pred_mano_params, pred_cam, _ = self.mano_head(conditioning_feats)
|
114 |
+
|
115 |
+
# Store useful regression outputs to the output dict
|
116 |
+
output = {}
|
117 |
+
output['pred_cam'] = pred_cam
|
118 |
+
output['pred_mano_params'] = {k: v.clone() for k,v in pred_mano_params.items()}
|
119 |
+
|
120 |
+
# Compute camera translation
|
121 |
+
device = pred_mano_params['hand_pose'].device
|
122 |
+
dtype = pred_mano_params['hand_pose'].dtype
|
123 |
+
focal_length = self.cfg.EXTRA.FOCAL_LENGTH * torch.ones(batch_size, 2, device=device, dtype=dtype)
|
124 |
+
pred_cam_t = torch.stack([pred_cam[:, 1],
|
125 |
+
pred_cam[:, 2],
|
126 |
+
2*focal_length[:, 0]/(self.cfg.MODEL.IMAGE_SIZE * pred_cam[:, 0] +1e-9)],dim=-1)
|
127 |
+
output['pred_cam_t'] = pred_cam_t
|
128 |
+
output['focal_length'] = focal_length
|
129 |
+
|
130 |
+
# Compute model vertices, joints and the projected joints
|
131 |
+
pred_mano_params['global_orient'] = pred_mano_params['global_orient'].reshape(batch_size, -1, 3, 3)
|
132 |
+
pred_mano_params['hand_pose'] = pred_mano_params['hand_pose'].reshape(batch_size, -1, 3, 3)
|
133 |
+
pred_mano_params['betas'] = pred_mano_params['betas'].reshape(batch_size, -1)
|
134 |
+
mano_output = self.mano(**{k: v.float() for k,v in pred_mano_params.items()}, pose2rot=False)
|
135 |
+
pred_keypoints_3d = mano_output.joints
|
136 |
+
pred_vertices = mano_output.vertices
|
137 |
+
output['pred_keypoints_3d'] = pred_keypoints_3d.reshape(batch_size, -1, 3)
|
138 |
+
output['pred_vertices'] = pred_vertices.reshape(batch_size, -1, 3)
|
139 |
+
pred_cam_t = pred_cam_t.reshape(-1, 3)
|
140 |
+
focal_length = focal_length.reshape(-1, 2)
|
141 |
+
pred_keypoints_2d = perspective_projection(pred_keypoints_3d,
|
142 |
+
translation=pred_cam_t,
|
143 |
+
focal_length=focal_length / self.cfg.MODEL.IMAGE_SIZE)
|
144 |
+
|
145 |
+
output['pred_keypoints_2d'] = pred_keypoints_2d.reshape(batch_size, -1, 2)
|
146 |
+
return output
|
147 |
+
|
148 |
+
def compute_loss(self, batch: Dict, output: Dict, train: bool = True) -> torch.Tensor:
|
149 |
+
"""
|
150 |
+
Compute losses given the input batch and the regression output
|
151 |
+
Args:
|
152 |
+
batch (Dict): Dictionary containing batch data
|
153 |
+
output (Dict): Dictionary containing the regression output
|
154 |
+
train (bool): Flag indicating whether it is training or validation mode
|
155 |
+
Returns:
|
156 |
+
torch.Tensor : Total loss for current batch
|
157 |
+
"""
|
158 |
+
|
159 |
+
pred_mano_params = output['pred_mano_params']
|
160 |
+
pred_keypoints_2d = output['pred_keypoints_2d']
|
161 |
+
pred_keypoints_3d = output['pred_keypoints_3d']
|
162 |
+
|
163 |
+
|
164 |
+
batch_size = pred_mano_params['hand_pose'].shape[0]
|
165 |
+
device = pred_mano_params['hand_pose'].device
|
166 |
+
dtype = pred_mano_params['hand_pose'].dtype
|
167 |
+
|
168 |
+
# Get annotations
|
169 |
+
gt_keypoints_2d = batch['keypoints_2d']
|
170 |
+
gt_keypoints_3d = batch['keypoints_3d']
|
171 |
+
gt_mano_params = batch['mano_params']
|
172 |
+
has_mano_params = batch['has_mano_params']
|
173 |
+
is_axis_angle = batch['mano_params_is_axis_angle']
|
174 |
+
|
175 |
+
# Compute 3D keypoint loss
|
176 |
+
loss_keypoints_2d = self.keypoint_2d_loss(pred_keypoints_2d, gt_keypoints_2d)
|
177 |
+
loss_keypoints_3d = self.keypoint_3d_loss(pred_keypoints_3d, gt_keypoints_3d, pelvis_id=0)
|
178 |
+
|
179 |
+
# Compute loss on MANO parameters
|
180 |
+
loss_mano_params = {}
|
181 |
+
for k, pred in pred_mano_params.items():
|
182 |
+
gt = gt_mano_params[k].view(batch_size, -1)
|
183 |
+
if is_axis_angle[k].all():
|
184 |
+
gt = aa_to_rotmat(gt.reshape(-1, 3)).view(batch_size, -1, 3, 3)
|
185 |
+
has_gt = has_mano_params[k]
|
186 |
+
loss_mano_params[k] = self.mano_parameter_loss(pred.reshape(batch_size, -1), gt.reshape(batch_size, -1), has_gt)
|
187 |
+
|
188 |
+
loss = self.cfg.LOSS_WEIGHTS['KEYPOINTS_3D'] * loss_keypoints_3d+\
|
189 |
+
self.cfg.LOSS_WEIGHTS['KEYPOINTS_2D'] * loss_keypoints_2d+\
|
190 |
+
sum([loss_mano_params[k] * self.cfg.LOSS_WEIGHTS[k.upper()] for k in loss_mano_params])
|
191 |
+
|
192 |
+
#loss = loss + 0*self.mano.body_pose.mean()
|
193 |
+
|
194 |
+
losses = dict(loss=loss.detach(),
|
195 |
+
loss_keypoints_2d=loss_keypoints_2d.detach(),
|
196 |
+
loss_keypoints_3d=loss_keypoints_3d.detach())
|
197 |
+
|
198 |
+
for k, v in loss_mano_params.items():
|
199 |
+
losses['loss_' + k] = v.detach()
|
200 |
+
|
201 |
+
output['losses'] = losses
|
202 |
+
|
203 |
+
return loss
|
204 |
+
|
205 |
+
# Tensoroboard logging should run from first rank only
|
206 |
+
@pl.utilities.rank_zero.rank_zero_only
|
207 |
+
def tensorboard_logging(self, batch: Dict, output: Dict, step_count: int, train: bool = True, write_to_summary_writer: bool = True) -> None:
|
208 |
+
"""
|
209 |
+
Log results to Tensorboard
|
210 |
+
Args:
|
211 |
+
batch (Dict): Dictionary containing batch data
|
212 |
+
output (Dict): Dictionary containing the regression output
|
213 |
+
step_count (int): Global training step count
|
214 |
+
train (bool): Flag indicating whether it is training or validation mode
|
215 |
+
"""
|
216 |
+
|
217 |
+
mode = 'train' if train else 'val'
|
218 |
+
batch_size = batch['keypoints_2d'].shape[0]
|
219 |
+
images = batch['img']
|
220 |
+
images = images * torch.tensor([0.229, 0.224, 0.225], device=images.device).reshape(1,3,1,1)
|
221 |
+
images = images + torch.tensor([0.485, 0.456, 0.406], device=images.device).reshape(1,3,1,1)
|
222 |
+
#images = 255*images.permute(0, 2, 3, 1).cpu().numpy()
|
223 |
+
|
224 |
+
pred_keypoints_3d = output['pred_keypoints_3d'].detach().reshape(batch_size, -1, 3)
|
225 |
+
pred_vertices = output['pred_vertices'].detach().reshape(batch_size, -1, 3)
|
226 |
+
focal_length = output['focal_length'].detach().reshape(batch_size, 2)
|
227 |
+
gt_keypoints_3d = batch['keypoints_3d']
|
228 |
+
gt_keypoints_2d = batch['keypoints_2d']
|
229 |
+
losses = output['losses']
|
230 |
+
pred_cam_t = output['pred_cam_t'].detach().reshape(batch_size, 3)
|
231 |
+
pred_keypoints_2d = output['pred_keypoints_2d'].detach().reshape(batch_size, -1, 2)
|
232 |
+
|
233 |
+
if write_to_summary_writer:
|
234 |
+
summary_writer = self.logger.experiment
|
235 |
+
for loss_name, val in losses.items():
|
236 |
+
summary_writer.add_scalar(mode +'/' + loss_name, val.detach().item(), step_count)
|
237 |
+
num_images = min(batch_size, self.cfg.EXTRA.NUM_LOG_IMAGES)
|
238 |
+
|
239 |
+
gt_keypoints_3d = batch['keypoints_3d']
|
240 |
+
pred_keypoints_3d = output['pred_keypoints_3d'].detach().reshape(batch_size, -1, 3)
|
241 |
+
|
242 |
+
# We render the skeletons instead of the full mesh because rendering a lot of meshes will make the training slow.
|
243 |
+
#predictions = self.renderer(pred_keypoints_3d[:num_images],
|
244 |
+
# gt_keypoints_3d[:num_images],
|
245 |
+
# 2 * gt_keypoints_2d[:num_images],
|
246 |
+
# images=images[:num_images],
|
247 |
+
# camera_translation=pred_cam_t[:num_images])
|
248 |
+
predictions = self.mesh_renderer.visualize_tensorboard(pred_vertices[:num_images].cpu().numpy(),
|
249 |
+
pred_cam_t[:num_images].cpu().numpy(),
|
250 |
+
images[:num_images].cpu().numpy(),
|
251 |
+
pred_keypoints_2d[:num_images].cpu().numpy(),
|
252 |
+
gt_keypoints_2d[:num_images].cpu().numpy(),
|
253 |
+
focal_length=focal_length[:num_images].cpu().numpy())
|
254 |
+
if write_to_summary_writer:
|
255 |
+
summary_writer.add_image('%s/predictions' % mode, predictions, step_count)
|
256 |
+
|
257 |
+
return predictions
|
258 |
+
|
259 |
+
def forward(self, batch: Dict) -> Dict:
|
260 |
+
"""
|
261 |
+
Run a forward step of the network in val mode
|
262 |
+
Args:
|
263 |
+
batch (Dict): Dictionary containing batch data
|
264 |
+
Returns:
|
265 |
+
Dict: Dictionary containing the regression output
|
266 |
+
"""
|
267 |
+
return self.forward_step(batch, train=False)
|
268 |
+
|
269 |
+
def training_step_discriminator(self, batch: Dict,
|
270 |
+
hand_pose: torch.Tensor,
|
271 |
+
betas: torch.Tensor,
|
272 |
+
optimizer: torch.optim.Optimizer) -> torch.Tensor:
|
273 |
+
"""
|
274 |
+
Run a discriminator training step
|
275 |
+
Args:
|
276 |
+
batch (Dict): Dictionary containing mocap batch data
|
277 |
+
hand_pose (torch.Tensor): Regressed hand pose from current step
|
278 |
+
betas (torch.Tensor): Regressed betas from current step
|
279 |
+
optimizer (torch.optim.Optimizer): Discriminator optimizer
|
280 |
+
Returns:
|
281 |
+
torch.Tensor: Discriminator loss
|
282 |
+
"""
|
283 |
+
batch_size = hand_pose.shape[0]
|
284 |
+
gt_hand_pose = batch['hand_pose']
|
285 |
+
gt_betas = batch['betas']
|
286 |
+
gt_rotmat = aa_to_rotmat(gt_hand_pose.view(-1,3)).view(batch_size, -1, 3, 3)
|
287 |
+
disc_fake_out = self.discriminator(hand_pose.detach(), betas.detach())
|
288 |
+
loss_fake = ((disc_fake_out - 0.0) ** 2).sum() / batch_size
|
289 |
+
disc_real_out = self.discriminator(gt_rotmat, gt_betas)
|
290 |
+
loss_real = ((disc_real_out - 1.0) ** 2).sum() / batch_size
|
291 |
+
loss_disc = loss_fake + loss_real
|
292 |
+
loss = self.cfg.LOSS_WEIGHTS.ADVERSARIAL * loss_disc
|
293 |
+
optimizer.zero_grad()
|
294 |
+
self.manual_backward(loss)
|
295 |
+
optimizer.step()
|
296 |
+
return loss_disc.detach()
|
297 |
+
|
298 |
+
def training_step(self, joint_batch: Dict, batch_idx: int) -> Dict:
|
299 |
+
"""
|
300 |
+
Run a full training step
|
301 |
+
Args:
|
302 |
+
joint_batch (Dict): Dictionary containing image and mocap batch data
|
303 |
+
batch_idx (int): Unused.
|
304 |
+
batch_idx (torch.Tensor): Unused.
|
305 |
+
Returns:
|
306 |
+
Dict: Dictionary containing regression output.
|
307 |
+
"""
|
308 |
+
batch = joint_batch['img']
|
309 |
+
mocap_batch = joint_batch['mocap']
|
310 |
+
optimizer = self.optimizers(use_pl_optimizer=True)
|
311 |
+
if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
|
312 |
+
optimizer, optimizer_disc = optimizer
|
313 |
+
|
314 |
+
batch_size = batch['img'].shape[0]
|
315 |
+
output = self.forward_step(batch, train=True)
|
316 |
+
pred_mano_params = output['pred_mano_params']
|
317 |
+
if self.cfg.get('UPDATE_GT_SPIN', False):
|
318 |
+
self.update_batch_gt_spin(batch, output)
|
319 |
+
loss = self.compute_loss(batch, output, train=True)
|
320 |
+
if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
|
321 |
+
disc_out = self.discriminator(pred_mano_params['hand_pose'].reshape(batch_size, -1), pred_mano_params['betas'].reshape(batch_size, -1))
|
322 |
+
loss_adv = ((disc_out - 1.0) ** 2).sum() / batch_size
|
323 |
+
loss = loss + self.cfg.LOSS_WEIGHTS.ADVERSARIAL * loss_adv
|
324 |
+
|
325 |
+
# Error if Nan
|
326 |
+
if torch.isnan(loss):
|
327 |
+
raise ValueError('Loss is NaN')
|
328 |
+
|
329 |
+
optimizer.zero_grad()
|
330 |
+
self.manual_backward(loss)
|
331 |
+
# Clip gradient
|
332 |
+
if self.cfg.TRAIN.get('GRAD_CLIP_VAL', 0) > 0:
|
333 |
+
gn = torch.nn.utils.clip_grad_norm_(self.get_parameters(), self.cfg.TRAIN.GRAD_CLIP_VAL, error_if_nonfinite=True)
|
334 |
+
self.log('train/grad_norm', gn, on_step=True, on_epoch=True, prog_bar=True, logger=True)
|
335 |
+
optimizer.step()
|
336 |
+
if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
|
337 |
+
loss_disc = self.training_step_discriminator(mocap_batch, pred_mano_params['hand_pose'].reshape(batch_size, -1), pred_mano_params['betas'].reshape(batch_size, -1), optimizer_disc)
|
338 |
+
output['losses']['loss_gen'] = loss_adv
|
339 |
+
output['losses']['loss_disc'] = loss_disc
|
340 |
+
|
341 |
+
if self.global_step > 0 and self.global_step % self.cfg.GENERAL.LOG_STEPS == 0:
|
342 |
+
self.tensorboard_logging(batch, output, self.global_step, train=True)
|
343 |
+
|
344 |
+
self.log('train/loss', output['losses']['loss'], on_step=True, on_epoch=True, prog_bar=True, logger=False)
|
345 |
+
|
346 |
+
return output
|
347 |
+
|
348 |
+
def validation_step(self, batch: Dict, batch_idx: int, dataloader_idx=0) -> Dict:
|
349 |
+
"""
|
350 |
+
Run a validation step and log to Tensorboard
|
351 |
+
Args:
|
352 |
+
batch (Dict): Dictionary containing batch data
|
353 |
+
batch_idx (int): Unused.
|
354 |
+
Returns:
|
355 |
+
Dict: Dictionary containing regression output.
|
356 |
+
"""
|
357 |
+
# batch_size = batch['img'].shape[0]
|
358 |
+
output = self.forward_step(batch, train=False)
|
359 |
+
loss = self.compute_loss(batch, output, train=False)
|
360 |
+
output['loss'] = loss
|
361 |
+
self.tensorboard_logging(batch, output, self.global_step, train=False)
|
362 |
+
|
363 |
+
return output
|
hamer/models/heads/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .mano_head import build_mano_head
|