# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmcv.utils.parrots_wrapper import _BatchNorm from mmpose.models.backbones import VGG def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True def test_vgg(): """Test VGG backbone.""" with pytest.raises(KeyError): # VGG depth should be in [11, 13, 16, 19] VGG(18) with pytest.raises(AssertionError): # In VGG: 1 <= num_stages <= 5 VGG(11, num_stages=0) with pytest.raises(AssertionError): # In VGG: 1 <= num_stages <= 5 VGG(11, num_stages=6) with pytest.raises(AssertionError): # len(dilations) == num_stages VGG(11, dilations=(1, 1), num_stages=3) with pytest.raises(TypeError): # pretrained must be a string path model = VGG(11) model.init_weights(pretrained=0) # Test VGG11 norm_eval=True model = VGG(11, norm_eval=True) model.init_weights() model.train() assert check_norm_state(model.modules(), False) # Test VGG11 forward without classifiers model = VGG(11, out_indices=(0, 1, 2, 3, 4)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == (1, 64, 112, 112) assert feat[1].shape == (1, 128, 56, 56) assert feat[2].shape == (1, 256, 28, 28) assert feat[3].shape == (1, 512, 14, 14) assert feat[4].shape == (1, 512, 7, 7) # Test VGG11 forward with classifiers model = VGG(11, num_classes=10, out_indices=(0, 1, 2, 3, 4, 5)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 6 assert feat[0].shape == (1, 64, 112, 112) assert feat[1].shape == (1, 128, 56, 56) assert feat[2].shape == (1, 256, 28, 28) assert feat[3].shape == (1, 512, 14, 14) assert feat[4].shape == (1, 512, 7, 7) assert feat[5].shape == (1, 10) # Test VGG11BN forward model = VGG(11, norm_cfg=dict(type='BN'), out_indices=(0, 1, 2, 3, 4)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 5 assert feat[0].shape == (1, 64, 112, 112) assert feat[1].shape == (1, 128, 56, 56) assert feat[2].shape == (1, 256, 28, 28) assert feat[3].shape == (1, 512, 14, 14) assert feat[4].shape == (1, 512, 7, 7) # Test VGG11BN forward with classifiers model = VGG( 11, num_classes=10, norm_cfg=dict(type='BN'), out_indices=(0, 1, 2, 3, 4, 5)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 6 assert feat[0].shape == (1, 64, 112, 112) assert feat[1].shape == (1, 128, 56, 56) assert feat[2].shape == (1, 256, 28, 28) assert feat[3].shape == (1, 512, 14, 14) assert feat[4].shape == (1, 512, 7, 7) assert feat[5].shape == (1, 10) # Test VGG13 with layers 1, 2, 3 out forward model = VGG(13, out_indices=(0, 1, 2)) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert len(feat) == 3 assert feat[0].shape == (1, 64, 112, 112) assert feat[1].shape == (1, 128, 56, 56) assert feat[2].shape == (1, 256, 28, 28) # Test VGG16 with top feature maps out forward model = VGG(16) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert feat.shape == (1, 512, 7, 7) # Test VGG19 with classification score out forward model = VGG(19, num_classes=10) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert feat.shape == (1, 10)