# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from torch.nn.modules import GroupNorm from torch.nn.modules.batchnorm import _BatchNorm from mmpose.models.backbones import ViPNAS_MobileNetV3 from mmpose.models.backbones.utils import InvertedResidual def is_norm(modules): """Check if is one of the norms.""" if isinstance(modules, (GroupNorm, _BatchNorm)): return True return False def check_norm_state(modules, train_state): """Check if norm layer is in correct train state.""" for mod in modules: if isinstance(mod, _BatchNorm): if mod.training != train_state: return False return True def test_mobilenetv3_backbone(): with pytest.raises(TypeError): # pretrained must be a string path model = ViPNAS_MobileNetV3() model.init_weights(pretrained=0) with pytest.raises(AttributeError): # frozen_stages must no more than 21 model = ViPNAS_MobileNetV3(frozen_stages=22) model.train() # Test MobileNetv3 model = ViPNAS_MobileNetV3() model.init_weights() model.train() # Test MobileNetv3 with first stage frozen frozen_stages = 1 model = ViPNAS_MobileNetV3(frozen_stages=frozen_stages) model.init_weights() model.train() for param in model.conv1.parameters(): assert param.requires_grad is False for i in range(1, frozen_stages + 1): layer = getattr(model, f'layer{i}') for mod in layer.modules(): if isinstance(mod, _BatchNorm): assert mod.training is False for param in layer.parameters(): assert param.requires_grad is False # Test MobileNetv3 with norm eval model = ViPNAS_MobileNetV3(norm_eval=True) model.init_weights() model.train() assert check_norm_state(model.modules(), False) # Test MobileNetv3 forward model = ViPNAS_MobileNetV3() model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert feat.shape == torch.Size([1, 160, 7, 7]) # Test MobileNetv3 forward with GroupNorm model = ViPNAS_MobileNetV3( norm_cfg=dict(type='GN', num_groups=2, requires_grad=True)) for m in model.modules(): if is_norm(m): assert isinstance(m, GroupNorm) model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert feat.shape == torch.Size([1, 160, 7, 7]) # Test MobileNetv3 with checkpoint forward model = ViPNAS_MobileNetV3(with_cp=True) for m in model.modules(): if isinstance(m, InvertedResidual): assert m.with_cp model.init_weights() model.train() imgs = torch.randn(1, 3, 224, 224) feat = model(imgs) assert feat.shape == torch.Size([1, 160, 7, 7]) test_mobilenetv3_backbone()