from __future__ import annotations import os import numpy as np import torch import torch.nn as nn from mmdet.apis import inference_detector, init_detector from mmpose.apis import inference_top_down_pose_model, init_pose_model, process_mmdet_results #os.environ["PYOPENGL_PLATFORM"] = "egl" # project root directory ROOT_DIR = "./" VIT_DIR = os.path.join(ROOT_DIR, "vendor/ViTPose") class ViTPoseModel(object): MODEL_DICT = { 'ViTPose+-G (multi-task train, COCO)': { 'config': f'{VIT_DIR}/configs/wholebody/2d_kpt_sview_rgb_img/topdown_heatmap/coco-wholebody/ViTPose_huge_wholebody_256x192.py', 'model': f'{ROOT_DIR}/_DATA/vitpose_ckpts/vitpose+_huge/wholebody.pth', }, } def __init__(self, device: str | torch.device): self.device = torch.device(device) self.model_name = 'ViTPose+-G (multi-task train, COCO)' self.model = self._load_model(self.model_name) def _load_all_models_once(self) -> None: for name in self.MODEL_DICT: self._load_model(name) def _load_model(self, name: str) -> nn.Module: dic = self.MODEL_DICT[name] ckpt_path = dic['model'] model = init_pose_model(dic['config'], ckpt_path, device=self.device) return model def set_model(self, name: str) -> None: if name == self.model_name: return self.model_name = name self.model = self._load_model(name) def predict_pose( self, image: np.ndarray, det_results: list[np.ndarray], box_score_threshold: float = 0.5) -> list[dict[str, np.ndarray]]: image = image[:, :, ::-1] # RGB -> BGR person_results = process_mmdet_results(det_results, 1) out, _ = inference_top_down_pose_model(self.model, image, person_results=person_results, bbox_thr=box_score_threshold, format='xyxy') return out