File size: 12,840 Bytes
add8f0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
"""gr.BarPlot() component."""
from __future__ import annotations
from typing import Any, Callable, Literal
import altair as alt
import pandas as pd
from gradio_client.documentation import document
from gradio.components.plot import AltairPlot, AltairPlotData, Plot
@document()
class BarPlot(Plot):
"""
Creates a bar plot component to display data from a pandas DataFrame (as output). As this component does
not accept user input, it is rarely used as an input component.
Demos: bar_plot, chicago-bikeshare-dashboard
"""
data_model = AltairPlotData
def __init__(
self,
value: pd.DataFrame | Callable | None = None,
x: str | None = None,
y: str | None = None,
*,
color: str | None = None,
vertical: bool = True,
group: str | None = None,
title: str | None = None,
tooltip: list[str] | str | None = None,
x_title: str | None = None,
y_title: str | None = None,
x_label_angle: float | None = None,
y_label_angle: float | None = None,
color_legend_title: str | None = None,
group_title: str | None = None,
color_legend_position: Literal[
"left",
"right",
"top",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
"none",
]
| None = None,
height: int | str | None = None,
width: int | str | None = None,
y_lim: list[int] | None = None,
caption: str | None = None,
interactive: bool | None = True,
label: str | None = None,
show_label: bool | None = None,
container: bool = True,
scale: int | None = None,
min_width: int = 160,
every: float | None = None,
visible: bool = True,
elem_id: str | None = None,
elem_classes: list[str] | str | None = None,
render: bool = True,
sort: Literal["x", "y", "-x", "-y"] | None = None,
show_actions_button: bool = False,
):
"""
Parameters:
value: The pandas dataframe containing the data to display in a scatter plot. If a callable is provided, the function will be called whenever the app loads to set the initial value of the plot.
x: Column corresponding to the x axis.
y: Column corresponding to the y axis.
color: The column to determine the bar color. Must be categorical (discrete values).
vertical: If True, the bars will be displayed vertically. If False, the x and y axis will be switched, displaying the bars horizontally. Default is True.
group: The column with which to split the overall plot into smaller subplots.
title: The title to display on top of the chart.
tooltip: The column (or list of columns) to display on the tooltip when a user hovers over a bar.
x_title: The title given to the x axis. By default, uses the value of the x parameter.
y_title: The title given to the y axis. By default, uses the value of the y parameter.
x_label_angle: The angle (in degrees) of the x axis labels. Positive values are clockwise, and negative values are counter-clockwise.
y_label_angle: The angle (in degrees) of the y axis labels. Positive values are clockwise, and negative values are counter-clockwise.
color_legend_title: The title given to the color legend. By default, uses the value of color parameter.
group_title: The label displayed on top of the subplot columns (or rows if vertical=True). Use an empty string to omit.
color_legend_position: The position of the color legend. If the string value 'none' is passed, this legend is omitted. For other valid position values see: https://vega.github.io/vega/docs/legends/#orientation.
height: The height of the plot, specified in pixels if a number is passed, or in CSS units if a string is passed.
width: The width of the plot, specified in pixels if a number is passed, or in CSS units if a string is passed.
y_lim: A tuple of list containing the limits for the y-axis, specified as [y_min, y_max].
caption: The (optional) caption to display below the plot.
interactive: Whether users should be able to interact with the plot by panning or zooming with their mouse or trackpad.
label: The (optional) label to display on the top left corner of the plot.
show_label: Whether the label should be displayed.
every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
visible: Whether the plot should be visible.
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
render: If False, component will not render be rendered in the Blocks context. Should be used if the intention is to assign event listeners now but render the component later.
sort: Specifies the sorting axis as either "x", "y", "-x" or "-y". If None, no sorting is applied.
show_actions_button: Whether to show the actions button on the top right corner of the plot.
"""
self.x = x
self.y = y
self.color = color
self.vertical = vertical
self.group = group
self.group_title = group_title
self.tooltip = tooltip
self.title = title
self.x_title = x_title
self.y_title = y_title
self.x_label_angle = x_label_angle
self.y_label_angle = y_label_angle
self.color_legend_title = color_legend_title
self.group_title = group_title
self.color_legend_position = color_legend_position
self.y_lim = y_lim
self.caption = caption
self.interactive_chart = interactive
self.width = width
self.height = height
self.sort = sort
self.show_actions_button = show_actions_button
super().__init__(
value=value,
label=label,
show_label=show_label,
container=container,
scale=scale,
min_width=min_width,
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
render=render,
every=every,
)
def get_block_name(self) -> str:
return "plot"
@staticmethod
def create_plot(
value: pd.DataFrame,
x: str,
y: str,
color: str | None = None,
vertical: bool = True,
group: str | None = None,
title: str | None = None,
tooltip: list[str] | str | None = None,
x_title: str | None = None,
y_title: str | None = None,
x_label_angle: float | None = None,
y_label_angle: float | None = None,
color_legend_title: str | None = None,
group_title: str | None = None,
color_legend_position: Literal[
"left",
"right",
"top",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
"none",
]
| None = None,
height: int | str | None = None,
width: int | str | None = None,
y_lim: list[int] | None = None,
interactive: bool | None = True,
sort: Literal["x", "y", "-x", "-y"] | None = None,
):
"""Helper for creating the bar plot."""
interactive = True if interactive is None else interactive
orientation = (
{"field": group, "title": group_title if group_title is not None else group}
if group
else {}
)
x_title = x_title or x
y_title = y_title or y
# If horizontal, switch x and y
if not vertical:
y, x = x, y
x = f"sum({x}):Q"
y_title, x_title = x_title, y_title
orientation = {"row": alt.Row(**orientation)} if orientation else {} # type: ignore
x_lim = y_lim
y_lim = None
else:
y = f"sum({y}):Q"
x_lim = None
orientation = {"column": alt.Column(**orientation)} if orientation else {} # type: ignore
encodings = dict(
x=alt.X(
x, # type: ignore
title=x_title, # type: ignore
scale=AltairPlot.create_scale(x_lim), # type: ignore
axis=alt.Axis(labelAngle=x_label_angle)
if x_label_angle is not None
else alt.Axis(),
sort=sort if vertical and sort is not None else None,
),
y=alt.Y(
y, # type: ignore
title=y_title, # type: ignore
scale=AltairPlot.create_scale(y_lim), # type: ignore
axis=alt.Axis(labelAngle=y_label_angle)
if y_label_angle is not None
else alt.Axis(),
sort=sort if not vertical and sort is not None else None,
),
**orientation,
)
properties = {}
if title:
properties["title"] = title
if height:
properties["height"] = height
if width:
properties["width"] = width
if color:
domain = value[color].unique().tolist()
range_ = list(range(len(domain)))
encodings["color"] = {
"field": color,
"type": "nominal",
"scale": {"domain": domain, "range": range_},
"legend": AltairPlot.create_legend(
position=color_legend_position, title=color_legend_title or color
),
}
if tooltip:
encodings["tooltip"] = tooltip # type: ignore
chart = (
alt.Chart(value) # type: ignore
.mark_bar() # type: ignore
.encode(**encodings)
.properties(background="transparent", **properties)
)
if interactive:
chart = chart.interactive()
return chart
def preprocess(self, payload: AltairPlotData) -> AltairPlotData:
"""
Parameters:
payload: The data to display in a bar plot.
Returns:
(Rarely used) passes the data displayed in the bar plot as an AltairPlotData dataclass, which includes the plot information as a JSON string, as well as the type of plot (in this case, "bar").
"""
return payload
def postprocess(self, value: pd.DataFrame | None) -> AltairPlotData | None:
"""
Parameters:
value: Expects a pandas DataFrame containing the data to display in the bar plot. The DataFrame should contain at least two columns, one for the x-axis (corresponding to this component's `x` argument) and one for the y-axis (corresponding to `y`).
Returns:
The data to display in a bar plot, in the form of an AltairPlotData dataclass, which includes the plot information as a JSON string, as well as the type of plot (in this case, "bar").
"""
# if None or update
if value is None:
return value
if self.x is None or self.y is None:
raise ValueError("No value provided for required parameters `x` and `y`.")
chart = self.create_plot(
value=value,
x=self.x,
y=self.y,
color=self.color,
vertical=self.vertical,
group=self.group,
title=self.title,
tooltip=self.tooltip,
x_title=self.x_title,
y_title=self.y_title,
x_label_angle=self.x_label_angle,
y_label_angle=self.y_label_angle,
color_legend_title=self.color_legend_title,
color_legend_position=self.color_legend_position, # type: ignore
group_title=self.group_title,
y_lim=self.y_lim,
interactive=self.interactive_chart,
height=self.height,
width=self.width,
sort=self.sort, # type: ignore
)
return AltairPlotData(type="altair", plot=chart.to_json(), chart="bar")
def example_payload(self) -> Any:
return None
def example_value(self) -> Any:
return pd.DataFrame({self.x: [1, 2, 3], self.y: [4, 5, 6]})
|