File size: 29,507 Bytes
fe41391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 |
from fontTools.misc.fixedTools import (
fixedToFloat as fi2fl,
floatToFixed as fl2fi,
floatToFixedToStr as fl2str,
strToFixedToFloat as str2fl,
otRound,
)
from fontTools.misc.textTools import safeEval
import array
from collections import Counter, defaultdict
import io
import logging
import struct
import sys
# https://www.microsoft.com/typography/otspec/otvarcommonformats.htm
EMBEDDED_PEAK_TUPLE = 0x8000
INTERMEDIATE_REGION = 0x4000
PRIVATE_POINT_NUMBERS = 0x2000
DELTAS_ARE_ZERO = 0x80
DELTAS_ARE_WORDS = 0x40
DELTA_RUN_COUNT_MASK = 0x3F
POINTS_ARE_WORDS = 0x80
POINT_RUN_COUNT_MASK = 0x7F
TUPLES_SHARE_POINT_NUMBERS = 0x8000
TUPLE_COUNT_MASK = 0x0FFF
TUPLE_INDEX_MASK = 0x0FFF
log = logging.getLogger(__name__)
class TupleVariation(object):
def __init__(self, axes, coordinates):
self.axes = axes.copy()
self.coordinates = list(coordinates)
def __repr__(self):
axes = ",".join(
sorted(["%s=%s" % (name, value) for (name, value) in self.axes.items()])
)
return "<TupleVariation %s %s>" % (axes, self.coordinates)
def __eq__(self, other):
return self.coordinates == other.coordinates and self.axes == other.axes
def getUsedPoints(self):
# Empty set means "all points used".
if None not in self.coordinates:
return frozenset()
used = frozenset([i for i, p in enumerate(self.coordinates) if p is not None])
# Return None if no points used.
return used if used else None
def hasImpact(self):
"""Returns True if this TupleVariation has any visible impact.
If the result is False, the TupleVariation can be omitted from the font
without making any visible difference.
"""
return any(c is not None for c in self.coordinates)
def toXML(self, writer, axisTags):
writer.begintag("tuple")
writer.newline()
for axis in axisTags:
value = self.axes.get(axis)
if value is not None:
minValue, value, maxValue = value
defaultMinValue = min(value, 0.0) # -0.3 --> -0.3; 0.7 --> 0.0
defaultMaxValue = max(value, 0.0) # -0.3 --> 0.0; 0.7 --> 0.7
if minValue == defaultMinValue and maxValue == defaultMaxValue:
writer.simpletag("coord", axis=axis, value=fl2str(value, 14))
else:
attrs = [
("axis", axis),
("min", fl2str(minValue, 14)),
("value", fl2str(value, 14)),
("max", fl2str(maxValue, 14)),
]
writer.simpletag("coord", attrs)
writer.newline()
wrote_any_deltas = False
for i, delta in enumerate(self.coordinates):
if type(delta) == tuple and len(delta) == 2:
writer.simpletag("delta", pt=i, x=delta[0], y=delta[1])
writer.newline()
wrote_any_deltas = True
elif type(delta) == int:
writer.simpletag("delta", cvt=i, value=delta)
writer.newline()
wrote_any_deltas = True
elif delta is not None:
log.error("bad delta format")
writer.comment("bad delta #%d" % i)
writer.newline()
wrote_any_deltas = True
if not wrote_any_deltas:
writer.comment("no deltas")
writer.newline()
writer.endtag("tuple")
writer.newline()
def fromXML(self, name, attrs, _content):
if name == "coord":
axis = attrs["axis"]
value = str2fl(attrs["value"], 14)
defaultMinValue = min(value, 0.0) # -0.3 --> -0.3; 0.7 --> 0.0
defaultMaxValue = max(value, 0.0) # -0.3 --> 0.0; 0.7 --> 0.7
minValue = str2fl(attrs.get("min", defaultMinValue), 14)
maxValue = str2fl(attrs.get("max", defaultMaxValue), 14)
self.axes[axis] = (minValue, value, maxValue)
elif name == "delta":
if "pt" in attrs:
point = safeEval(attrs["pt"])
x = safeEval(attrs["x"])
y = safeEval(attrs["y"])
self.coordinates[point] = (x, y)
elif "cvt" in attrs:
cvt = safeEval(attrs["cvt"])
value = safeEval(attrs["value"])
self.coordinates[cvt] = value
else:
log.warning("bad delta format: %s" % ", ".join(sorted(attrs.keys())))
def compile(self, axisTags, sharedCoordIndices={}, pointData=None):
assert set(self.axes.keys()) <= set(axisTags), (
"Unknown axis tag found.",
self.axes.keys(),
axisTags,
)
tupleData = []
auxData = []
if pointData is None:
usedPoints = self.getUsedPoints()
if usedPoints is None: # Nothing to encode
return b"", b""
pointData = self.compilePoints(usedPoints)
coord = self.compileCoord(axisTags)
flags = sharedCoordIndices.get(coord)
if flags is None:
flags = EMBEDDED_PEAK_TUPLE
tupleData.append(coord)
intermediateCoord = self.compileIntermediateCoord(axisTags)
if intermediateCoord is not None:
flags |= INTERMEDIATE_REGION
tupleData.append(intermediateCoord)
# pointData of b'' implies "use shared points".
if pointData:
flags |= PRIVATE_POINT_NUMBERS
auxData.append(pointData)
auxData.append(self.compileDeltas())
auxData = b"".join(auxData)
tupleData.insert(0, struct.pack(">HH", len(auxData), flags))
return b"".join(tupleData), auxData
def compileCoord(self, axisTags):
result = []
axes = self.axes
for axis in axisTags:
triple = axes.get(axis)
if triple is None:
result.append(b"\0\0")
else:
result.append(struct.pack(">h", fl2fi(triple[1], 14)))
return b"".join(result)
def compileIntermediateCoord(self, axisTags):
needed = False
for axis in axisTags:
minValue, value, maxValue = self.axes.get(axis, (0.0, 0.0, 0.0))
defaultMinValue = min(value, 0.0) # -0.3 --> -0.3; 0.7 --> 0.0
defaultMaxValue = max(value, 0.0) # -0.3 --> 0.0; 0.7 --> 0.7
if (minValue != defaultMinValue) or (maxValue != defaultMaxValue):
needed = True
break
if not needed:
return None
minCoords = []
maxCoords = []
for axis in axisTags:
minValue, value, maxValue = self.axes.get(axis, (0.0, 0.0, 0.0))
minCoords.append(struct.pack(">h", fl2fi(minValue, 14)))
maxCoords.append(struct.pack(">h", fl2fi(maxValue, 14)))
return b"".join(minCoords + maxCoords)
@staticmethod
def decompileCoord_(axisTags, data, offset):
coord = {}
pos = offset
for axis in axisTags:
coord[axis] = fi2fl(struct.unpack(">h", data[pos : pos + 2])[0], 14)
pos += 2
return coord, pos
@staticmethod
def compilePoints(points):
# If the set consists of all points in the glyph, it gets encoded with
# a special encoding: a single zero byte.
#
# To use this optimization, points passed in must be empty set.
# The following two lines are not strictly necessary as the main code
# below would emit the same. But this is most common and faster.
if not points:
return b"\0"
# In the 'gvar' table, the packing of point numbers is a little surprising.
# It consists of multiple runs, each being a delta-encoded list of integers.
# For example, the point set {17, 18, 19, 20, 21, 22, 23} gets encoded as
# [6, 17, 1, 1, 1, 1, 1, 1]. The first value (6) is the run length minus 1.
# There are two types of runs, with values being either 8 or 16 bit unsigned
# integers.
points = list(points)
points.sort()
numPoints = len(points)
result = bytearray()
# The binary representation starts with the total number of points in the set,
# encoded into one or two bytes depending on the value.
if numPoints < 0x80:
result.append(numPoints)
else:
result.append((numPoints >> 8) | 0x80)
result.append(numPoints & 0xFF)
MAX_RUN_LENGTH = 127
pos = 0
lastValue = 0
while pos < numPoints:
runLength = 0
headerPos = len(result)
result.append(0)
useByteEncoding = None
while pos < numPoints and runLength <= MAX_RUN_LENGTH:
curValue = points[pos]
delta = curValue - lastValue
if useByteEncoding is None:
useByteEncoding = 0 <= delta <= 0xFF
if useByteEncoding and (delta > 0xFF or delta < 0):
# we need to start a new run (which will not use byte encoding)
break
# TODO This never switches back to a byte-encoding from a short-encoding.
# That's suboptimal.
if useByteEncoding:
result.append(delta)
else:
result.append(delta >> 8)
result.append(delta & 0xFF)
lastValue = curValue
pos += 1
runLength += 1
if useByteEncoding:
result[headerPos] = runLength - 1
else:
result[headerPos] = (runLength - 1) | POINTS_ARE_WORDS
return result
@staticmethod
def decompilePoints_(numPoints, data, offset, tableTag):
"""(numPoints, data, offset, tableTag) --> ([point1, point2, ...], newOffset)"""
assert tableTag in ("cvar", "gvar")
pos = offset
numPointsInData = data[pos]
pos += 1
if (numPointsInData & POINTS_ARE_WORDS) != 0:
numPointsInData = (numPointsInData & POINT_RUN_COUNT_MASK) << 8 | data[pos]
pos += 1
if numPointsInData == 0:
return (range(numPoints), pos)
result = []
while len(result) < numPointsInData:
runHeader = data[pos]
pos += 1
numPointsInRun = (runHeader & POINT_RUN_COUNT_MASK) + 1
point = 0
if (runHeader & POINTS_ARE_WORDS) != 0:
points = array.array("H")
pointsSize = numPointsInRun * 2
else:
points = array.array("B")
pointsSize = numPointsInRun
points.frombytes(data[pos : pos + pointsSize])
if sys.byteorder != "big":
points.byteswap()
assert len(points) == numPointsInRun
pos += pointsSize
result.extend(points)
# Convert relative to absolute
absolute = []
current = 0
for delta in result:
current += delta
absolute.append(current)
result = absolute
del absolute
badPoints = {str(p) for p in result if p < 0 or p >= numPoints}
if badPoints:
log.warning(
"point %s out of range in '%s' table"
% (",".join(sorted(badPoints)), tableTag)
)
return (result, pos)
def compileDeltas(self):
deltaX = []
deltaY = []
if self.getCoordWidth() == 2:
for c in self.coordinates:
if c is None:
continue
deltaX.append(c[0])
deltaY.append(c[1])
else:
for c in self.coordinates:
if c is None:
continue
deltaX.append(c)
bytearr = bytearray()
self.compileDeltaValues_(deltaX, bytearr)
self.compileDeltaValues_(deltaY, bytearr)
return bytearr
@staticmethod
def compileDeltaValues_(deltas, bytearr=None):
"""[value1, value2, value3, ...] --> bytearray
Emits a sequence of runs. Each run starts with a
byte-sized header whose 6 least significant bits
(header & 0x3F) indicate how many values are encoded
in this run. The stored length is the actual length
minus one; run lengths are thus in the range [1..64].
If the header byte has its most significant bit (0x80)
set, all values in this run are zero, and no data
follows. Otherwise, the header byte is followed by
((header & 0x3F) + 1) signed values. If (header &
0x40) is clear, the delta values are stored as signed
bytes; if (header & 0x40) is set, the delta values are
signed 16-bit integers.
""" # Explaining the format because the 'gvar' spec is hard to understand.
if bytearr is None:
bytearr = bytearray()
pos = 0
numDeltas = len(deltas)
while pos < numDeltas:
value = deltas[pos]
if value == 0:
pos = TupleVariation.encodeDeltaRunAsZeroes_(deltas, pos, bytearr)
elif -128 <= value <= 127:
pos = TupleVariation.encodeDeltaRunAsBytes_(deltas, pos, bytearr)
else:
pos = TupleVariation.encodeDeltaRunAsWords_(deltas, pos, bytearr)
return bytearr
@staticmethod
def encodeDeltaRunAsZeroes_(deltas, offset, bytearr):
pos = offset
numDeltas = len(deltas)
while pos < numDeltas and deltas[pos] == 0:
pos += 1
runLength = pos - offset
while runLength >= 64:
bytearr.append(DELTAS_ARE_ZERO | 63)
runLength -= 64
if runLength:
bytearr.append(DELTAS_ARE_ZERO | (runLength - 1))
return pos
@staticmethod
def encodeDeltaRunAsBytes_(deltas, offset, bytearr):
pos = offset
numDeltas = len(deltas)
while pos < numDeltas:
value = deltas[pos]
if not (-128 <= value <= 127):
break
# Within a byte-encoded run of deltas, a single zero
# is best stored literally as 0x00 value. However,
# if are two or more zeroes in a sequence, it is
# better to start a new run. For example, the sequence
# of deltas [15, 15, 0, 15, 15] becomes 6 bytes
# (04 0F 0F 00 0F 0F) when storing the zero value
# literally, but 7 bytes (01 0F 0F 80 01 0F 0F)
# when starting a new run.
if value == 0 and pos + 1 < numDeltas and deltas[pos + 1] == 0:
break
pos += 1
runLength = pos - offset
while runLength >= 64:
bytearr.append(63)
bytearr.extend(array.array("b", deltas[offset : offset + 64]))
offset += 64
runLength -= 64
if runLength:
bytearr.append(runLength - 1)
bytearr.extend(array.array("b", deltas[offset:pos]))
return pos
@staticmethod
def encodeDeltaRunAsWords_(deltas, offset, bytearr):
pos = offset
numDeltas = len(deltas)
while pos < numDeltas:
value = deltas[pos]
# Within a word-encoded run of deltas, it is easiest
# to start a new run (with a different encoding)
# whenever we encounter a zero value. For example,
# the sequence [0x6666, 0, 0x7777] needs 7 bytes when
# storing the zero literally (42 66 66 00 00 77 77),
# and equally 7 bytes when starting a new run
# (40 66 66 80 40 77 77).
if value == 0:
break
# Within a word-encoded run of deltas, a single value
# in the range (-128..127) should be encoded literally
# because it is more compact. For example, the sequence
# [0x6666, 2, 0x7777] becomes 7 bytes when storing
# the value literally (42 66 66 00 02 77 77), but 8 bytes
# when starting a new run (40 66 66 00 02 40 77 77).
if (
(-128 <= value <= 127)
and pos + 1 < numDeltas
and (-128 <= deltas[pos + 1] <= 127)
):
break
pos += 1
runLength = pos - offset
while runLength >= 64:
bytearr.append(DELTAS_ARE_WORDS | 63)
a = array.array("h", deltas[offset : offset + 64])
if sys.byteorder != "big":
a.byteswap()
bytearr.extend(a)
offset += 64
runLength -= 64
if runLength:
bytearr.append(DELTAS_ARE_WORDS | (runLength - 1))
a = array.array("h", deltas[offset:pos])
if sys.byteorder != "big":
a.byteswap()
bytearr.extend(a)
return pos
@staticmethod
def decompileDeltas_(numDeltas, data, offset):
"""(numDeltas, data, offset) --> ([delta, delta, ...], newOffset)"""
result = []
pos = offset
while len(result) < numDeltas:
runHeader = data[pos]
pos += 1
numDeltasInRun = (runHeader & DELTA_RUN_COUNT_MASK) + 1
if (runHeader & DELTAS_ARE_ZERO) != 0:
result.extend([0] * numDeltasInRun)
else:
if (runHeader & DELTAS_ARE_WORDS) != 0:
deltas = array.array("h")
deltasSize = numDeltasInRun * 2
else:
deltas = array.array("b")
deltasSize = numDeltasInRun
deltas.frombytes(data[pos : pos + deltasSize])
if sys.byteorder != "big":
deltas.byteswap()
assert len(deltas) == numDeltasInRun
pos += deltasSize
result.extend(deltas)
assert len(result) == numDeltas
return (result, pos)
@staticmethod
def getTupleSize_(flags, axisCount):
size = 4
if (flags & EMBEDDED_PEAK_TUPLE) != 0:
size += axisCount * 2
if (flags & INTERMEDIATE_REGION) != 0:
size += axisCount * 4
return size
def getCoordWidth(self):
"""Return 2 if coordinates are (x, y) as in gvar, 1 if single values
as in cvar, or 0 if empty.
"""
firstDelta = next((c for c in self.coordinates if c is not None), None)
if firstDelta is None:
return 0 # empty or has no impact
if type(firstDelta) in (int, float):
return 1
if type(firstDelta) is tuple and len(firstDelta) == 2:
return 2
raise TypeError(
"invalid type of delta; expected (int or float) number, or "
"Tuple[number, number]: %r" % firstDelta
)
def scaleDeltas(self, scalar):
if scalar == 1.0:
return # no change
coordWidth = self.getCoordWidth()
self.coordinates = [
(
None
if d is None
else d * scalar if coordWidth == 1 else (d[0] * scalar, d[1] * scalar)
)
for d in self.coordinates
]
def roundDeltas(self):
coordWidth = self.getCoordWidth()
self.coordinates = [
(
None
if d is None
else otRound(d) if coordWidth == 1 else (otRound(d[0]), otRound(d[1]))
)
for d in self.coordinates
]
def calcInferredDeltas(self, origCoords, endPts):
from fontTools.varLib.iup import iup_delta
if self.getCoordWidth() == 1:
raise TypeError("Only 'gvar' TupleVariation can have inferred deltas")
if None in self.coordinates:
if len(self.coordinates) != len(origCoords):
raise ValueError(
"Expected len(origCoords) == %d; found %d"
% (len(self.coordinates), len(origCoords))
)
self.coordinates = iup_delta(self.coordinates, origCoords, endPts)
def optimize(self, origCoords, endPts, tolerance=0.5, isComposite=False):
from fontTools.varLib.iup import iup_delta_optimize
if None in self.coordinates:
return # already optimized
deltaOpt = iup_delta_optimize(
self.coordinates, origCoords, endPts, tolerance=tolerance
)
if None in deltaOpt:
if isComposite and all(d is None for d in deltaOpt):
# Fix for macOS composites
# https://github.com/fonttools/fonttools/issues/1381
deltaOpt = [(0, 0)] + [None] * (len(deltaOpt) - 1)
# Use "optimized" version only if smaller...
varOpt = TupleVariation(self.axes, deltaOpt)
# Shouldn't matter that this is different from fvar...?
axisTags = sorted(self.axes.keys())
tupleData, auxData = self.compile(axisTags)
unoptimizedLength = len(tupleData) + len(auxData)
tupleData, auxData = varOpt.compile(axisTags)
optimizedLength = len(tupleData) + len(auxData)
if optimizedLength < unoptimizedLength:
self.coordinates = varOpt.coordinates
def __imul__(self, scalar):
self.scaleDeltas(scalar)
return self
def __iadd__(self, other):
if not isinstance(other, TupleVariation):
return NotImplemented
deltas1 = self.coordinates
length = len(deltas1)
deltas2 = other.coordinates
if len(deltas2) != length:
raise ValueError("cannot sum TupleVariation deltas with different lengths")
# 'None' values have different meanings in gvar vs cvar TupleVariations:
# within the gvar, when deltas are not provided explicitly for some points,
# they need to be inferred; whereas for the 'cvar' table, if deltas are not
# provided for some CVT values, then no adjustments are made (i.e. None == 0).
# Thus, we cannot sum deltas for gvar TupleVariations if they contain
# inferred inferred deltas (the latter need to be computed first using
# 'calcInferredDeltas' method), but we can treat 'None' values in cvar
# deltas as if they are zeros.
if self.getCoordWidth() == 2:
for i, d2 in zip(range(length), deltas2):
d1 = deltas1[i]
try:
deltas1[i] = (d1[0] + d2[0], d1[1] + d2[1])
except TypeError:
raise ValueError("cannot sum gvar deltas with inferred points")
else:
for i, d2 in zip(range(length), deltas2):
d1 = deltas1[i]
if d1 is not None and d2 is not None:
deltas1[i] = d1 + d2
elif d1 is None and d2 is not None:
deltas1[i] = d2
# elif d2 is None do nothing
return self
def decompileSharedTuples(axisTags, sharedTupleCount, data, offset):
result = []
for _ in range(sharedTupleCount):
t, offset = TupleVariation.decompileCoord_(axisTags, data, offset)
result.append(t)
return result
def compileSharedTuples(
axisTags, variations, MAX_NUM_SHARED_COORDS=TUPLE_INDEX_MASK + 1
):
coordCount = Counter()
for var in variations:
coord = var.compileCoord(axisTags)
coordCount[coord] += 1
# In python < 3.7, most_common() ordering is non-deterministic
# so apply a sort to make sure the ordering is consistent.
sharedCoords = sorted(
coordCount.most_common(MAX_NUM_SHARED_COORDS),
key=lambda item: (-item[1], item[0]),
)
return [c[0] for c in sharedCoords if c[1] > 1]
def compileTupleVariationStore(
variations, pointCount, axisTags, sharedTupleIndices, useSharedPoints=True
):
# pointCount is actually unused. Keeping for API compat.
del pointCount
newVariations = []
pointDatas = []
# Compile all points and figure out sharing if desired
sharedPoints = None
# Collect, count, and compile point-sets for all variation sets
pointSetCount = defaultdict(int)
for v in variations:
points = v.getUsedPoints()
if points is None: # Empty variations
continue
pointSetCount[points] += 1
newVariations.append(v)
pointDatas.append(points)
variations = newVariations
del newVariations
if not variations:
return (0, b"", b"")
n = len(variations[0].coordinates)
assert all(
len(v.coordinates) == n for v in variations
), "Variation sets have different sizes"
compiledPoints = {
pointSet: TupleVariation.compilePoints(pointSet) for pointSet in pointSetCount
}
tupleVariationCount = len(variations)
tuples = []
data = []
if useSharedPoints:
# Find point-set which saves most bytes.
def key(pn):
pointSet = pn[0]
count = pn[1]
return len(compiledPoints[pointSet]) * (count - 1)
sharedPoints = max(pointSetCount.items(), key=key)[0]
data.append(compiledPoints[sharedPoints])
tupleVariationCount |= TUPLES_SHARE_POINT_NUMBERS
# b'' implies "use shared points"
pointDatas = [
compiledPoints[points] if points != sharedPoints else b""
for points in pointDatas
]
for v, p in zip(variations, pointDatas):
thisTuple, thisData = v.compile(axisTags, sharedTupleIndices, pointData=p)
tuples.append(thisTuple)
data.append(thisData)
tuples = b"".join(tuples)
data = b"".join(data)
return tupleVariationCount, tuples, data
def decompileTupleVariationStore(
tableTag,
axisTags,
tupleVariationCount,
pointCount,
sharedTuples,
data,
pos,
dataPos,
):
numAxes = len(axisTags)
result = []
if (tupleVariationCount & TUPLES_SHARE_POINT_NUMBERS) != 0:
sharedPoints, dataPos = TupleVariation.decompilePoints_(
pointCount, data, dataPos, tableTag
)
else:
sharedPoints = []
for _ in range(tupleVariationCount & TUPLE_COUNT_MASK):
dataSize, flags = struct.unpack(">HH", data[pos : pos + 4])
tupleSize = TupleVariation.getTupleSize_(flags, numAxes)
tupleData = data[pos : pos + tupleSize]
pointDeltaData = data[dataPos : dataPos + dataSize]
result.append(
decompileTupleVariation_(
pointCount,
sharedTuples,
sharedPoints,
tableTag,
axisTags,
tupleData,
pointDeltaData,
)
)
pos += tupleSize
dataPos += dataSize
return result
def decompileTupleVariation_(
pointCount, sharedTuples, sharedPoints, tableTag, axisTags, data, tupleData
):
assert tableTag in ("cvar", "gvar"), tableTag
flags = struct.unpack(">H", data[2:4])[0]
pos = 4
if (flags & EMBEDDED_PEAK_TUPLE) == 0:
peak = sharedTuples[flags & TUPLE_INDEX_MASK]
else:
peak, pos = TupleVariation.decompileCoord_(axisTags, data, pos)
if (flags & INTERMEDIATE_REGION) != 0:
start, pos = TupleVariation.decompileCoord_(axisTags, data, pos)
end, pos = TupleVariation.decompileCoord_(axisTags, data, pos)
else:
start, end = inferRegion_(peak)
axes = {}
for axis in axisTags:
region = start[axis], peak[axis], end[axis]
if region != (0.0, 0.0, 0.0):
axes[axis] = region
pos = 0
if (flags & PRIVATE_POINT_NUMBERS) != 0:
points, pos = TupleVariation.decompilePoints_(
pointCount, tupleData, pos, tableTag
)
else:
points = sharedPoints
deltas = [None] * pointCount
if tableTag == "cvar":
deltas_cvt, pos = TupleVariation.decompileDeltas_(len(points), tupleData, pos)
for p, delta in zip(points, deltas_cvt):
if 0 <= p < pointCount:
deltas[p] = delta
elif tableTag == "gvar":
deltas_x, pos = TupleVariation.decompileDeltas_(len(points), tupleData, pos)
deltas_y, pos = TupleVariation.decompileDeltas_(len(points), tupleData, pos)
for p, x, y in zip(points, deltas_x, deltas_y):
if 0 <= p < pointCount:
deltas[p] = (x, y)
return TupleVariation(axes, deltas)
def inferRegion_(peak):
"""Infer start and end for a (non-intermediate) region
This helper function computes the applicability region for
variation tuples whose INTERMEDIATE_REGION flag is not set in the
TupleVariationHeader structure. Variation tuples apply only to
certain regions of the variation space; outside that region, the
tuple has no effect. To make the binary encoding more compact,
TupleVariationHeaders can omit the intermediateStartTuple and
intermediateEndTuple fields.
"""
start, end = {}, {}
for axis, value in peak.items():
start[axis] = min(value, 0.0) # -0.3 --> -0.3; 0.7 --> 0.0
end[axis] = max(value, 0.0) # -0.3 --> 0.0; 0.7 --> 0.7
return (start, end)
|