File size: 8,331 Bytes
fe41391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import io
from typing import Any, Dict, List, Optional, Union
from .constants import INFERENCE_ENDPOINT
from .hf_api import HfApi
from .utils import build_hf_headers, get_session, is_pillow_available, logging, validate_hf_hub_args
from .utils._deprecation import _deprecate_method
logger = logging.get_logger(__name__)
ALL_TASKS = [
# NLP
"text-classification",
"token-classification",
"table-question-answering",
"question-answering",
"zero-shot-classification",
"translation",
"summarization",
"conversational",
"feature-extraction",
"text-generation",
"text2text-generation",
"fill-mask",
"sentence-similarity",
# Audio
"text-to-speech",
"automatic-speech-recognition",
"audio-to-audio",
"audio-classification",
"voice-activity-detection",
# Computer vision
"image-classification",
"object-detection",
"image-segmentation",
"text-to-image",
"image-to-image",
# Others
"tabular-classification",
"tabular-regression",
]
class InferenceApi:
"""Client to configure requests and make calls to the HuggingFace Inference API.
Example:
```python
>>> from huggingface_hub.inference_api import InferenceApi
>>> # Mask-fill example
>>> inference = InferenceApi("bert-base-uncased")
>>> inference(inputs="The goal of life is [MASK].")
[{'sequence': 'the goal of life is life.', 'score': 0.10933292657136917, 'token': 2166, 'token_str': 'life'}]
>>> # Question Answering example
>>> inference = InferenceApi("deepset/roberta-base-squad2")
>>> inputs = {
... "question": "What's my name?",
... "context": "My name is Clara and I live in Berkeley.",
... }
>>> inference(inputs)
{'score': 0.9326569437980652, 'start': 11, 'end': 16, 'answer': 'Clara'}
>>> # Zero-shot example
>>> inference = InferenceApi("typeform/distilbert-base-uncased-mnli")
>>> inputs = "Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!"
>>> params = {"candidate_labels": ["refund", "legal", "faq"]}
>>> inference(inputs, params)
{'sequence': 'Hi, I recently bought a device from your company but it is not working as advertised and I would like to get reimbursed!', 'labels': ['refund', 'faq', 'legal'], 'scores': [0.9378499388694763, 0.04914155602455139, 0.013008488342165947]}
>>> # Overriding configured task
>>> inference = InferenceApi("bert-base-uncased", task="feature-extraction")
>>> # Text-to-image
>>> inference = InferenceApi("stabilityai/stable-diffusion-2-1")
>>> inference("cat")
<PIL.PngImagePlugin.PngImageFile image (...)>
>>> # Return as raw response to parse the output yourself
>>> inference = InferenceApi("mio/amadeus")
>>> response = inference("hello world", raw_response=True)
>>> response.headers
{"Content-Type": "audio/flac", ...}
>>> response.content # raw bytes from server
b'(...)'
```
"""
@validate_hf_hub_args
@_deprecate_method(
version="1.0",
message=(
"`InferenceApi` client is deprecated in favor of the more feature-complete `InferenceClient`. Check out"
" this guide to learn how to convert your script to use it:"
" https://huggingface.co/docs/huggingface_hub/guides/inference#legacy-inferenceapi-client."
),
)
def __init__(
self,
repo_id: str,
task: Optional[str] = None,
token: Optional[str] = None,
gpu: bool = False,
):
"""Inits headers and API call information.
Args:
repo_id (``str``):
Id of repository (e.g. `user/bert-base-uncased`).
task (``str``, `optional`, defaults ``None``):
Whether to force a task instead of using task specified in the
repository.
token (`str`, `optional`):
The API token to use as HTTP bearer authorization. This is not
the authentication token. You can find the token in
https://huggingface.co/settings/token. Alternatively, you can
find both your organizations and personal API tokens using
`HfApi().whoami(token)`.
gpu (`bool`, `optional`, defaults `False`):
Whether to use GPU instead of CPU for inference(requires Startup
plan at least).
"""
self.options = {"wait_for_model": True, "use_gpu": gpu}
self.headers = build_hf_headers(token=token)
# Configure task
model_info = HfApi(token=token).model_info(repo_id=repo_id)
if not model_info.pipeline_tag and not task:
raise ValueError(
"Task not specified in the repository. Please add it to the model card"
" using pipeline_tag"
" (https://huggingface.co/docs#how-is-a-models-type-of-inference-api-and-widget-determined)"
)
if task and task != model_info.pipeline_tag:
if task not in ALL_TASKS:
raise ValueError(f"Invalid task {task}. Make sure it's valid.")
logger.warning(
"You're using a different task than the one specified in the"
" repository. Be sure to know what you're doing :)"
)
self.task = task
else:
assert model_info.pipeline_tag is not None, "Pipeline tag cannot be None"
self.task = model_info.pipeline_tag
self.api_url = f"{INFERENCE_ENDPOINT}/pipeline/{self.task}/{repo_id}"
def __repr__(self):
# Do not add headers to repr to avoid leaking token.
return f"InferenceAPI(api_url='{self.api_url}', task='{self.task}', options={self.options})"
def __call__(
self,
inputs: Optional[Union[str, Dict, List[str], List[List[str]]]] = None,
params: Optional[Dict] = None,
data: Optional[bytes] = None,
raw_response: bool = False,
) -> Any:
"""Make a call to the Inference API.
Args:
inputs (`str` or `Dict` or `List[str]` or `List[List[str]]`, *optional*):
Inputs for the prediction.
params (`Dict`, *optional*):
Additional parameters for the models. Will be sent as `parameters` in the
payload.
data (`bytes`, *optional*):
Bytes content of the request. In this case, leave `inputs` and `params` empty.
raw_response (`bool`, defaults to `False`):
If `True`, the raw `Response` object is returned. You can parse its content
as preferred. By default, the content is parsed into a more practical format
(json dictionary or PIL Image for example).
"""
# Build payload
payload: Dict[str, Any] = {
"options": self.options,
}
if inputs:
payload["inputs"] = inputs
if params:
payload["parameters"] = params
# Make API call
response = get_session().post(self.api_url, headers=self.headers, json=payload, data=data)
# Let the user handle the response
if raw_response:
return response
# By default, parse the response for the user.
content_type = response.headers.get("Content-Type") or ""
if content_type.startswith("image"):
if not is_pillow_available():
raise ImportError(
f"Task '{self.task}' returned as image but Pillow is not installed."
" Please install it (`pip install Pillow`) or pass"
" `raw_response=True` to get the raw `Response` object and parse"
" the image by yourself."
)
from PIL import Image
return Image.open(io.BytesIO(response.content))
elif content_type == "application/json":
return response.json()
else:
raise NotImplementedError(
f"{content_type} output type is not implemented yet. You can pass"
" `raw_response=True` to get the raw `Response` object and parse the"
" output by yourself."
)
|