File size: 30,222 Bytes
fe41391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
from __future__ import annotations

import itertools
import pickle

from typing import Any
from unittest.mock import patch, Mock

from datetime import datetime, date, timedelta

import numpy as np
from numpy.testing import (assert_array_equal, assert_approx_equal,
                           assert_array_almost_equal)
import pytest

from matplotlib import _api, cbook
import matplotlib.colors as mcolors
from matplotlib.cbook import delete_masked_points, strip_math


class Test_delete_masked_points:
    def test_bad_first_arg(self):
        with pytest.raises(ValueError):
            delete_masked_points('a string', np.arange(1.0, 7.0))

    def test_string_seq(self):
        a1 = ['a', 'b', 'c', 'd', 'e', 'f']
        a2 = [1, 2, 3, np.nan, np.nan, 6]
        result1, result2 = delete_masked_points(a1, a2)
        ind = [0, 1, 2, 5]
        assert_array_equal(result1, np.array(a1)[ind])
        assert_array_equal(result2, np.array(a2)[ind])

    def test_datetime(self):
        dates = [datetime(2008, 1, 1), datetime(2008, 1, 2),
                 datetime(2008, 1, 3), datetime(2008, 1, 4),
                 datetime(2008, 1, 5), datetime(2008, 1, 6)]
        a_masked = np.ma.array([1, 2, 3, np.nan, np.nan, 6],
                               mask=[False, False, True, True, False, False])
        actual = delete_masked_points(dates, a_masked)
        ind = [0, 1, 5]
        assert_array_equal(actual[0], np.array(dates)[ind])
        assert_array_equal(actual[1], a_masked[ind].compressed())

    def test_rgba(self):
        a_masked = np.ma.array([1, 2, 3, np.nan, np.nan, 6],
                               mask=[False, False, True, True, False, False])
        a_rgba = mcolors.to_rgba_array(['r', 'g', 'b', 'c', 'm', 'y'])
        actual = delete_masked_points(a_masked, a_rgba)
        ind = [0, 1, 5]
        assert_array_equal(actual[0], a_masked[ind].compressed())
        assert_array_equal(actual[1], a_rgba[ind])


class Test_boxplot_stats:
    def setup_method(self):
        np.random.seed(937)
        self.nrows = 37
        self.ncols = 4
        self.data = np.random.lognormal(size=(self.nrows, self.ncols),
                                        mean=1.5, sigma=1.75)
        self.known_keys = sorted([
            'mean', 'med', 'q1', 'q3', 'iqr',
            'cilo', 'cihi', 'whislo', 'whishi',
            'fliers', 'label'
        ])
        self.std_results = cbook.boxplot_stats(self.data)

        self.known_nonbootstrapped_res = {
            'cihi': 6.8161283264444847,
            'cilo': -0.1489815330368689,
            'iqr': 13.492709959447094,
            'mean': 13.00447442387868,
            'med': 3.3335733967038079,
            'fliers': np.array([
                92.55467075,  87.03819018,  42.23204914,  39.29390996
            ]),
            'q1': 1.3597529879465153,
            'q3': 14.85246294739361,
            'whishi': 27.899688243699629,
            'whislo': 0.042143774965502923
        }

        self.known_bootstrapped_ci = {
            'cihi': 8.939577523357828,
            'cilo': 1.8692703958676578,
        }

        self.known_whis3_res = {
            'whishi': 42.232049135969874,
            'whislo': 0.042143774965502923,
            'fliers': np.array([92.55467075, 87.03819018]),
        }

        self.known_res_percentiles = {
            'whislo':   0.1933685896907924,
            'whishi':  42.232049135969874
        }

        self.known_res_range = {
            'whislo': 0.042143774965502923,
            'whishi': 92.554670752188699

        }

    def test_form_main_list(self):
        assert isinstance(self.std_results, list)

    def test_form_each_dict(self):
        for res in self.std_results:
            assert isinstance(res, dict)

    def test_form_dict_keys(self):
        for res in self.std_results:
            assert set(res) <= set(self.known_keys)

    def test_results_baseline(self):
        res = self.std_results[0]
        for key, value in self.known_nonbootstrapped_res.items():
            assert_array_almost_equal(res[key], value)

    def test_results_bootstrapped(self):
        results = cbook.boxplot_stats(self.data, bootstrap=10000)
        res = results[0]
        for key, value in self.known_bootstrapped_ci.items():
            assert_approx_equal(res[key], value)

    def test_results_whiskers_float(self):
        results = cbook.boxplot_stats(self.data, whis=3)
        res = results[0]
        for key, value in self.known_whis3_res.items():
            assert_array_almost_equal(res[key], value)

    def test_results_whiskers_range(self):
        results = cbook.boxplot_stats(self.data, whis=[0, 100])
        res = results[0]
        for key, value in self.known_res_range.items():
            assert_array_almost_equal(res[key], value)

    def test_results_whiskers_percentiles(self):
        results = cbook.boxplot_stats(self.data, whis=[5, 95])
        res = results[0]
        for key, value in self.known_res_percentiles.items():
            assert_array_almost_equal(res[key], value)

    def test_results_withlabels(self):
        labels = ['Test1', 2, 'Aardvark', 4]
        results = cbook.boxplot_stats(self.data, labels=labels)
        for lab, res in zip(labels, results):
            assert res['label'] == lab

        results = cbook.boxplot_stats(self.data)
        for res in results:
            assert 'label' not in res

    def test_label_error(self):
        labels = [1, 2]
        with pytest.raises(ValueError):
            cbook.boxplot_stats(self.data, labels=labels)

    def test_bad_dims(self):
        data = np.random.normal(size=(34, 34, 34))
        with pytest.raises(ValueError):
            cbook.boxplot_stats(data)

    def test_boxplot_stats_autorange_false(self):
        x = np.zeros(shape=140)
        x = np.hstack([-25, x, 25])
        bstats_false = cbook.boxplot_stats(x, autorange=False)
        bstats_true = cbook.boxplot_stats(x, autorange=True)

        assert bstats_false[0]['whislo'] == 0
        assert bstats_false[0]['whishi'] == 0
        assert_array_almost_equal(bstats_false[0]['fliers'], [-25, 25])

        assert bstats_true[0]['whislo'] == -25
        assert bstats_true[0]['whishi'] == 25
        assert_array_almost_equal(bstats_true[0]['fliers'], [])


class Test_callback_registry:
    def setup_method(self):
        self.signal = 'test'
        self.callbacks = cbook.CallbackRegistry()

    def connect(self, s, func, pickle):
        if pickle:
            return self.callbacks.connect(s, func)
        else:
            return self.callbacks._connect_picklable(s, func)

    def disconnect(self, cid):
        return self.callbacks.disconnect(cid)

    def count(self):
        count1 = len(self.callbacks._func_cid_map.get(self.signal, []))
        count2 = len(self.callbacks.callbacks.get(self.signal))
        assert count1 == count2
        return count1

    def is_empty(self):
        np.testing.break_cycles()
        assert self.callbacks._func_cid_map == {}
        assert self.callbacks.callbacks == {}
        assert self.callbacks._pickled_cids == set()

    def is_not_empty(self):
        np.testing.break_cycles()
        assert self.callbacks._func_cid_map != {}
        assert self.callbacks.callbacks != {}

    def test_cid_restore(self):
        cb = cbook.CallbackRegistry()
        cb.connect('a', lambda: None)
        cb2 = pickle.loads(pickle.dumps(cb))
        cid = cb2.connect('c', lambda: None)
        assert cid == 1

    @pytest.mark.parametrize('pickle', [True, False])
    def test_callback_complete(self, pickle):
        # ensure we start with an empty registry
        self.is_empty()

        # create a class for testing
        mini_me = Test_callback_registry()

        # test that we can add a callback
        cid1 = self.connect(self.signal, mini_me.dummy, pickle)
        assert type(cid1) is int
        self.is_not_empty()

        # test that we don't add a second callback
        cid2 = self.connect(self.signal, mini_me.dummy, pickle)
        assert cid1 == cid2
        self.is_not_empty()
        assert len(self.callbacks._func_cid_map) == 1
        assert len(self.callbacks.callbacks) == 1

        del mini_me

        # check we now have no callbacks registered
        self.is_empty()

    @pytest.mark.parametrize('pickle', [True, False])
    def test_callback_disconnect(self, pickle):
        # ensure we start with an empty registry
        self.is_empty()

        # create a class for testing
        mini_me = Test_callback_registry()

        # test that we can add a callback
        cid1 = self.connect(self.signal, mini_me.dummy, pickle)
        assert type(cid1) is int
        self.is_not_empty()

        self.disconnect(cid1)

        # check we now have no callbacks registered
        self.is_empty()

    @pytest.mark.parametrize('pickle', [True, False])
    def test_callback_wrong_disconnect(self, pickle):
        # ensure we start with an empty registry
        self.is_empty()

        # create a class for testing
        mini_me = Test_callback_registry()

        # test that we can add a callback
        cid1 = self.connect(self.signal, mini_me.dummy, pickle)
        assert type(cid1) is int
        self.is_not_empty()

        self.disconnect("foo")

        # check we still have callbacks registered
        self.is_not_empty()

    @pytest.mark.parametrize('pickle', [True, False])
    def test_registration_on_non_empty_registry(self, pickle):
        # ensure we start with an empty registry
        self.is_empty()

        # setup the registry with a callback
        mini_me = Test_callback_registry()
        self.connect(self.signal, mini_me.dummy, pickle)

        # Add another callback
        mini_me2 = Test_callback_registry()
        self.connect(self.signal, mini_me2.dummy, pickle)

        # Remove and add the second callback
        mini_me2 = Test_callback_registry()
        self.connect(self.signal, mini_me2.dummy, pickle)

        # We still have 2 references
        self.is_not_empty()
        assert self.count() == 2

        # Removing the last 2 references
        mini_me = None
        mini_me2 = None
        self.is_empty()

    def dummy(self):
        pass

    def test_pickling(self):
        assert hasattr(pickle.loads(pickle.dumps(cbook.CallbackRegistry())),
                       "callbacks")


def test_callbackregistry_default_exception_handler(capsys, monkeypatch):
    cb = cbook.CallbackRegistry()
    cb.connect("foo", lambda: None)

    monkeypatch.setattr(
        cbook, "_get_running_interactive_framework", lambda: None)
    with pytest.raises(TypeError):
        cb.process("foo", "argument mismatch")
    outerr = capsys.readouterr()
    assert outerr.out == outerr.err == ""

    monkeypatch.setattr(
        cbook, "_get_running_interactive_framework", lambda: "not-none")
    cb.process("foo", "argument mismatch")  # No error in that case.
    outerr = capsys.readouterr()
    assert outerr.out == ""
    assert "takes 0 positional arguments but 1 was given" in outerr.err


def raising_cb_reg(func):
    class TestException(Exception):
        pass

    def raise_runtime_error():
        raise RuntimeError

    def raise_value_error():
        raise ValueError

    def transformer(excp):
        if isinstance(excp, RuntimeError):
            raise TestException
        raise excp

    # old default
    cb_old = cbook.CallbackRegistry(exception_handler=None)
    cb_old.connect('foo', raise_runtime_error)

    # filter
    cb_filt = cbook.CallbackRegistry(exception_handler=transformer)
    cb_filt.connect('foo', raise_runtime_error)

    # filter
    cb_filt_pass = cbook.CallbackRegistry(exception_handler=transformer)
    cb_filt_pass.connect('foo', raise_value_error)

    return pytest.mark.parametrize('cb, excp',
                                   [[cb_old, RuntimeError],
                                    [cb_filt, TestException],
                                    [cb_filt_pass, ValueError]])(func)


@raising_cb_reg
def test_callbackregistry_custom_exception_handler(monkeypatch, cb, excp):
    monkeypatch.setattr(
        cbook, "_get_running_interactive_framework", lambda: None)
    with pytest.raises(excp):
        cb.process('foo')


def test_callbackregistry_signals():
    cr = cbook.CallbackRegistry(signals=["foo"])
    results = []
    def cb(x): results.append(x)
    cr.connect("foo", cb)
    with pytest.raises(ValueError):
        cr.connect("bar", cb)
    cr.process("foo", 1)
    with pytest.raises(ValueError):
        cr.process("bar", 1)
    assert results == [1]


def test_callbackregistry_blocking():
    # Needs an exception handler for interactive testing environments
    # that would only print this out instead of raising the exception
    def raise_handler(excp):
        raise excp
    cb = cbook.CallbackRegistry(exception_handler=raise_handler)
    def test_func1():
        raise ValueError("1 should be blocked")
    def test_func2():
        raise ValueError("2 should be blocked")
    cb.connect("test1", test_func1)
    cb.connect("test2", test_func2)

    # block all of the callbacks to make sure they aren't processed
    with cb.blocked():
        cb.process("test1")
        cb.process("test2")

    # block individual callbacks to make sure the other is still processed
    with cb.blocked(signal="test1"):
        # Blocked
        cb.process("test1")
        # Should raise
        with pytest.raises(ValueError, match="2 should be blocked"):
            cb.process("test2")

    # Make sure the original callback functions are there after blocking
    with pytest.raises(ValueError, match="1 should be blocked"):
        cb.process("test1")
    with pytest.raises(ValueError, match="2 should be blocked"):
        cb.process("test2")


@pytest.mark.parametrize('line, result', [
    ('a : no_comment', 'a : no_comment'),
    ('a : "quoted str"', 'a : "quoted str"'),
    ('a : "quoted str" # comment', 'a : "quoted str"'),
    ('a : "#000000"', 'a : "#000000"'),
    ('a : "#000000" # comment', 'a : "#000000"'),
    ('a : ["#000000", "#FFFFFF"]', 'a : ["#000000", "#FFFFFF"]'),
    ('a : ["#000000", "#FFFFFF"] # comment', 'a : ["#000000", "#FFFFFF"]'),
    ('a : val  # a comment "with quotes"', 'a : val'),
    ('# only comment "with quotes" xx', ''),
])
def test_strip_comment(line, result):
    """Strip everything from the first unquoted #."""
    assert cbook._strip_comment(line) == result


def test_strip_comment_invalid():
    with pytest.raises(ValueError, match="Missing closing quote"):
        cbook._strip_comment('grid.color: "aa')


def test_sanitize_sequence():
    d = {'a': 1, 'b': 2, 'c': 3}
    k = ['a', 'b', 'c']
    v = [1, 2, 3]
    i = [('a', 1), ('b', 2), ('c', 3)]
    assert k == sorted(cbook.sanitize_sequence(d.keys()))
    assert v == sorted(cbook.sanitize_sequence(d.values()))
    assert i == sorted(cbook.sanitize_sequence(d.items()))
    assert i == cbook.sanitize_sequence(i)
    assert k == cbook.sanitize_sequence(k)


fail_mapping: tuple[tuple[dict, dict], ...] = (
    ({'a': 1, 'b': 2}, {'alias_mapping': {'a': ['b']}}),
    ({'a': 1, 'b': 2}, {'alias_mapping': {'a': ['a', 'b']}}),
)

pass_mapping: tuple[tuple[Any, dict, dict], ...] = (
    (None, {}, {}),
    ({'a': 1, 'b': 2}, {'a': 1, 'b': 2}, {}),
    ({'b': 2}, {'a': 2}, {'alias_mapping': {'a': ['a', 'b']}}),
)


@pytest.mark.parametrize('inp, kwargs_to_norm', fail_mapping)
def test_normalize_kwargs_fail(inp, kwargs_to_norm):
    with pytest.raises(TypeError), \
         _api.suppress_matplotlib_deprecation_warning():
        cbook.normalize_kwargs(inp, **kwargs_to_norm)


@pytest.mark.parametrize('inp, expected, kwargs_to_norm',
                         pass_mapping)
def test_normalize_kwargs_pass(inp, expected, kwargs_to_norm):
    with _api.suppress_matplotlib_deprecation_warning():
        # No other warning should be emitted.
        assert expected == cbook.normalize_kwargs(inp, **kwargs_to_norm)


def test_warn_external_frame_embedded_python():
    with patch.object(cbook, "sys") as mock_sys:
        mock_sys._getframe = Mock(return_value=None)
        with pytest.warns(UserWarning, match=r"\Adummy\Z"):
            _api.warn_external("dummy")


def test_to_prestep():
    x = np.arange(4)
    y1 = np.arange(4)
    y2 = np.arange(4)[::-1]

    xs, y1s, y2s = cbook.pts_to_prestep(x, y1, y2)

    x_target = np.asarray([0, 0, 1, 1, 2, 2, 3], dtype=float)
    y1_target = np.asarray([0, 1, 1, 2, 2, 3, 3], dtype=float)
    y2_target = np.asarray([3, 2, 2, 1, 1, 0, 0], dtype=float)

    assert_array_equal(x_target, xs)
    assert_array_equal(y1_target, y1s)
    assert_array_equal(y2_target, y2s)

    xs, y1s = cbook.pts_to_prestep(x, y1)
    assert_array_equal(x_target, xs)
    assert_array_equal(y1_target, y1s)


def test_to_prestep_empty():
    steps = cbook.pts_to_prestep([], [])
    assert steps.shape == (2, 0)


def test_to_poststep():
    x = np.arange(4)
    y1 = np.arange(4)
    y2 = np.arange(4)[::-1]

    xs, y1s, y2s = cbook.pts_to_poststep(x, y1, y2)

    x_target = np.asarray([0, 1, 1, 2, 2, 3, 3], dtype=float)
    y1_target = np.asarray([0, 0, 1, 1, 2, 2, 3], dtype=float)
    y2_target = np.asarray([3, 3, 2, 2, 1, 1, 0], dtype=float)

    assert_array_equal(x_target, xs)
    assert_array_equal(y1_target, y1s)
    assert_array_equal(y2_target, y2s)

    xs, y1s = cbook.pts_to_poststep(x, y1)
    assert_array_equal(x_target, xs)
    assert_array_equal(y1_target, y1s)


def test_to_poststep_empty():
    steps = cbook.pts_to_poststep([], [])
    assert steps.shape == (2, 0)


def test_to_midstep():
    x = np.arange(4)
    y1 = np.arange(4)
    y2 = np.arange(4)[::-1]

    xs, y1s, y2s = cbook.pts_to_midstep(x, y1, y2)

    x_target = np.asarray([0, .5, .5, 1.5, 1.5, 2.5, 2.5, 3], dtype=float)
    y1_target = np.asarray([0, 0, 1, 1, 2, 2, 3, 3], dtype=float)
    y2_target = np.asarray([3, 3, 2, 2, 1, 1, 0, 0], dtype=float)

    assert_array_equal(x_target, xs)
    assert_array_equal(y1_target, y1s)
    assert_array_equal(y2_target, y2s)

    xs, y1s = cbook.pts_to_midstep(x, y1)
    assert_array_equal(x_target, xs)
    assert_array_equal(y1_target, y1s)


def test_to_midstep_empty():
    steps = cbook.pts_to_midstep([], [])
    assert steps.shape == (2, 0)


@pytest.mark.parametrize(
    "args",
    [(np.arange(12).reshape(3, 4), 'a'),
     (np.arange(12), 'a'),
     (np.arange(12), np.arange(3))])
def test_step_fails(args):
    with pytest.raises(ValueError):
        cbook.pts_to_prestep(*args)


def test_grouper():
    class Dummy:
        pass
    a, b, c, d, e = objs = [Dummy() for _ in range(5)]
    g = cbook.Grouper()
    g.join(*objs)
    assert set(list(g)[0]) == set(objs)
    assert set(g.get_siblings(a)) == set(objs)

    for other in objs[1:]:
        assert g.joined(a, other)

    g.remove(a)
    for other in objs[1:]:
        assert not g.joined(a, other)

    for A, B in itertools.product(objs[1:], objs[1:]):
        assert g.joined(A, B)


def test_grouper_private():
    class Dummy:
        pass
    objs = [Dummy() for _ in range(5)]
    g = cbook.Grouper()
    g.join(*objs)
    # reach in and touch the internals !
    mapping = g._mapping

    for o in objs:
        assert o in mapping

    base_set = mapping[objs[0]]
    for o in objs[1:]:
        assert mapping[o] is base_set


def test_flatiter():
    x = np.arange(5)
    it = x.flat
    assert 0 == next(it)
    assert 1 == next(it)
    ret = cbook._safe_first_finite(it)
    assert ret == 0

    assert 0 == next(it)
    assert 1 == next(it)


def test__safe_first_finite_all_nan():
    arr = np.full(2, np.nan)
    ret = cbook._safe_first_finite(arr)
    assert np.isnan(ret)


def test__safe_first_finite_all_inf():
    arr = np.full(2, np.inf)
    ret = cbook._safe_first_finite(arr)
    assert np.isinf(ret)


def test_reshape2d():

    class Dummy:
        pass

    xnew = cbook._reshape_2D([], 'x')
    assert np.shape(xnew) == (1, 0)

    x = [Dummy() for _ in range(5)]

    xnew = cbook._reshape_2D(x, 'x')
    assert np.shape(xnew) == (1, 5)

    x = np.arange(5)
    xnew = cbook._reshape_2D(x, 'x')
    assert np.shape(xnew) == (1, 5)

    x = [[Dummy() for _ in range(5)] for _ in range(3)]
    xnew = cbook._reshape_2D(x, 'x')
    assert np.shape(xnew) == (3, 5)

    # this is strange behaviour, but...
    x = np.random.rand(3, 5)
    xnew = cbook._reshape_2D(x, 'x')
    assert np.shape(xnew) == (5, 3)

    # Test a list of lists which are all of length 1
    x = [[1], [2], [3]]
    xnew = cbook._reshape_2D(x, 'x')
    assert isinstance(xnew, list)
    assert isinstance(xnew[0], np.ndarray) and xnew[0].shape == (1,)
    assert isinstance(xnew[1], np.ndarray) and xnew[1].shape == (1,)
    assert isinstance(xnew[2], np.ndarray) and xnew[2].shape == (1,)

    # Test a list of zero-dimensional arrays
    x = [np.array(0), np.array(1), np.array(2)]
    xnew = cbook._reshape_2D(x, 'x')
    assert isinstance(xnew, list)
    assert len(xnew) == 1
    assert isinstance(xnew[0], np.ndarray) and xnew[0].shape == (3,)

    # Now test with a list of lists with different lengths, which means the
    # array will internally be converted to a 1D object array of lists
    x = [[1, 2, 3], [3, 4], [2]]
    xnew = cbook._reshape_2D(x, 'x')
    assert isinstance(xnew, list)
    assert isinstance(xnew[0], np.ndarray) and xnew[0].shape == (3,)
    assert isinstance(xnew[1], np.ndarray) and xnew[1].shape == (2,)
    assert isinstance(xnew[2], np.ndarray) and xnew[2].shape == (1,)

    # We now need to make sure that this works correctly for Numpy subclasses
    # where iterating over items can return subclasses too, which may be
    # iterable even if they are scalars. To emulate this, we make a Numpy
    # array subclass that returns Numpy 'scalars' when iterating or accessing
    # values, and these are technically iterable if checking for example
    # isinstance(x, collections.abc.Iterable).

    class ArraySubclass(np.ndarray):

        def __iter__(self):
            for value in super().__iter__():
                yield np.array(value)

        def __getitem__(self, item):
            return np.array(super().__getitem__(item))

    v = np.arange(10, dtype=float)
    x = ArraySubclass((10,), dtype=float, buffer=v.data)

    xnew = cbook._reshape_2D(x, 'x')

    # We check here that the array wasn't split up into many individual
    # ArraySubclass, which is what used to happen due to a bug in _reshape_2D
    assert len(xnew) == 1
    assert isinstance(xnew[0], ArraySubclass)

    # check list of strings:
    x = ['a', 'b', 'c', 'c', 'dd', 'e', 'f', 'ff', 'f']
    xnew = cbook._reshape_2D(x, 'x')
    assert len(xnew[0]) == len(x)
    assert isinstance(xnew[0], np.ndarray)


def test_reshape2d_pandas(pd):
    # separate to allow the rest of the tests to run if no pandas...
    X = np.arange(30).reshape(10, 3)
    x = pd.DataFrame(X, columns=["a", "b", "c"])
    Xnew = cbook._reshape_2D(x, 'x')
    # Need to check each row because _reshape_2D returns a list of arrays:
    for x, xnew in zip(X.T, Xnew):
        np.testing.assert_array_equal(x, xnew)


def test_reshape2d_xarray(xr):
    # separate to allow the rest of the tests to run if no xarray...
    X = np.arange(30).reshape(10, 3)
    x = xr.DataArray(X, dims=["x", "y"])
    Xnew = cbook._reshape_2D(x, 'x')
    # Need to check each row because _reshape_2D returns a list of arrays:
    for x, xnew in zip(X.T, Xnew):
        np.testing.assert_array_equal(x, xnew)


def test_index_of_pandas(pd):
    # separate to allow the rest of the tests to run if no pandas...
    X = np.arange(30).reshape(10, 3)
    x = pd.DataFrame(X, columns=["a", "b", "c"])
    Idx, Xnew = cbook.index_of(x)
    np.testing.assert_array_equal(X, Xnew)
    IdxRef = np.arange(10)
    np.testing.assert_array_equal(Idx, IdxRef)


def test_index_of_xarray(xr):
    # separate to allow the rest of the tests to run if no xarray...
    X = np.arange(30).reshape(10, 3)
    x = xr.DataArray(X, dims=["x", "y"])
    Idx, Xnew = cbook.index_of(x)
    np.testing.assert_array_equal(X, Xnew)
    IdxRef = np.arange(10)
    np.testing.assert_array_equal(Idx, IdxRef)


def test_contiguous_regions():
    a, b, c = 3, 4, 5
    # Starts and ends with True
    mask = [True]*a + [False]*b + [True]*c
    expected = [(0, a), (a+b, a+b+c)]
    assert cbook.contiguous_regions(mask) == expected
    d, e = 6, 7
    # Starts with True ends with False
    mask = mask + [False]*e
    assert cbook.contiguous_regions(mask) == expected
    # Starts with False ends with True
    mask = [False]*d + mask[:-e]
    expected = [(d, d+a), (d+a+b, d+a+b+c)]
    assert cbook.contiguous_regions(mask) == expected
    # Starts and ends with False
    mask = mask + [False]*e
    assert cbook.contiguous_regions(mask) == expected
    # No True in mask
    assert cbook.contiguous_regions([False]*5) == []
    # Empty mask
    assert cbook.contiguous_regions([]) == []


def test_safe_first_element_pandas_series(pd):
    # deliberately create a pandas series with index not starting from 0
    s = pd.Series(range(5), index=range(10, 15))
    actual = cbook._safe_first_finite(s)
    assert actual == 0


def test_warn_external(recwarn):
    _api.warn_external("oops")
    assert len(recwarn) == 1
    assert recwarn[0].filename == __file__


def test_array_patch_perimeters():
    # This compares the old implementation as a reference for the
    # vectorized one.
    def check(x, rstride, cstride):
        rows, cols = x.shape
        row_inds = [*range(0, rows-1, rstride), rows-1]
        col_inds = [*range(0, cols-1, cstride), cols-1]
        polys = []
        for rs, rs_next in zip(row_inds[:-1], row_inds[1:]):
            for cs, cs_next in zip(col_inds[:-1], col_inds[1:]):
                # +1 ensures we share edges between polygons
                ps = cbook._array_perimeter(x[rs:rs_next+1, cs:cs_next+1]).T
                polys.append(ps)
        polys = np.asarray(polys)
        assert np.array_equal(polys,
                              cbook._array_patch_perimeters(
                                  x, rstride=rstride, cstride=cstride))

    def divisors(n):
        return [i for i in range(1, n + 1) if n % i == 0]

    for rows, cols in [(5, 5), (7, 14), (13, 9)]:
        x = np.arange(rows * cols).reshape(rows, cols)
        for rstride, cstride in itertools.product(divisors(rows - 1),
                                                  divisors(cols - 1)):
            check(x, rstride=rstride, cstride=cstride)


def test_setattr_cm():
    class A:
        cls_level = object()
        override = object()

        def __init__(self):
            self.aardvark = 'aardvark'
            self.override = 'override'
            self._p = 'p'

        def meth(self):
            ...

        @classmethod
        def classy(cls):
            ...

        @staticmethod
        def static():
            ...

        @property
        def prop(self):
            return self._p

        @prop.setter
        def prop(self, val):
            self._p = val

    class B(A):
        ...

    other = A()

    def verify_pre_post_state(obj):
        # When you access a Python method the function is bound
        # to the object at access time so you get a new instance
        # of MethodType every time.
        #
        # https://docs.python.org/3/howto/descriptor.html#functions-and-methods
        assert obj.meth is not obj.meth
        # normal attribute should give you back the same instance every time
        assert obj.aardvark is obj.aardvark
        assert a.aardvark == 'aardvark'
        # and our property happens to give the same instance every time
        assert obj.prop is obj.prop
        assert obj.cls_level is A.cls_level
        assert obj.override == 'override'
        assert not hasattr(obj, 'extra')
        assert obj.prop == 'p'
        assert obj.monkey == other.meth
        assert obj.cls_level is A.cls_level
        assert 'cls_level' not in obj.__dict__
        assert 'classy' not in obj.__dict__
        assert 'static' not in obj.__dict__

    a = B()

    a.monkey = other.meth
    verify_pre_post_state(a)
    with cbook._setattr_cm(
            a, prop='squirrel',
            aardvark='moose', meth=lambda: None,
            override='boo', extra='extra',
            monkey=lambda: None, cls_level='bob',
            classy='classy', static='static'):
        # because we have set a lambda, it is normal attribute access
        # and the same every time
        assert a.meth is a.meth
        assert a.aardvark is a.aardvark
        assert a.aardvark == 'moose'
        assert a.override == 'boo'
        assert a.extra == 'extra'
        assert a.prop == 'squirrel'
        assert a.monkey != other.meth
        assert a.cls_level == 'bob'
        assert a.classy == 'classy'
        assert a.static == 'static'

    verify_pre_post_state(a)


def test_format_approx():
    f = cbook._format_approx
    assert f(0, 1) == '0'
    assert f(0, 2) == '0'
    assert f(0, 3) == '0'
    assert f(-0.0123, 1) == '-0'
    assert f(1e-7, 5) == '0'
    assert f(0.0012345600001, 5) == '0.00123'
    assert f(-0.0012345600001, 5) == '-0.00123'
    assert f(0.0012345600001, 8) == f(0.0012345600001, 10) == '0.00123456'


def test_safe_first_element_with_none():
    datetime_lst = [date.today() + timedelta(days=i) for i in range(10)]
    datetime_lst[0] = None
    actual = cbook._safe_first_finite(datetime_lst)
    assert actual is not None and actual == datetime_lst[1]


def test_strip_math():
    assert strip_math(r'1 \times 2') == r'1 \times 2'
    assert strip_math(r'$1 \times 2$') == '1 x 2'
    assert strip_math(r'$\rm{hi}$') == 'hi'


@pytest.mark.parametrize('fmt, value, result', [
    ('%.2f m', 0.2, '0.20 m'),
    ('{:.2f} m', 0.2, '0.20 m'),
    ('{} m', 0.2, '0.2 m'),
    ('const', 0.2, 'const'),
    ('%d or {}', 0.2, '0 or {}'),
    ('{{{:,.0f}}}', 2e5, '{200,000}'),
    ('{:.2%}', 2/3, '66.67%'),
    ('$%g', 2.54, '$2.54'),
])
def test_auto_format_str(fmt, value, result):
    """Apply *value* to the format string *fmt*."""
    assert cbook._auto_format_str(fmt, value) == result
    assert cbook._auto_format_str(fmt, np.float64(value)) == result