|
from matplotlib.axes._base import _AxesBase |
|
from matplotlib.axes._secondary_axes import SecondaryAxis |
|
|
|
from matplotlib.artist import Artist |
|
from matplotlib.backend_bases import RendererBase |
|
from matplotlib.collections import ( |
|
Collection, |
|
LineCollection, |
|
BrokenBarHCollection, |
|
PathCollection, |
|
PolyCollection, |
|
EventCollection, |
|
QuadMesh, |
|
) |
|
from matplotlib.colors import Colormap, Normalize |
|
from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer |
|
from matplotlib.contour import ContourSet, QuadContourSet |
|
from matplotlib.image import AxesImage, PcolorImage |
|
from matplotlib.legend import Legend |
|
from matplotlib.legend_handler import HandlerBase |
|
from matplotlib.lines import Line2D, AxLine |
|
from matplotlib.mlab import GaussianKDE |
|
from matplotlib.patches import Rectangle, FancyArrow, Polygon, StepPatch, Wedge |
|
from matplotlib.quiver import Quiver, QuiverKey, Barbs |
|
from matplotlib.text import Annotation, Text |
|
from matplotlib.transforms import Transform, Bbox |
|
import matplotlib.tri as mtri |
|
import matplotlib.table as mtable |
|
import matplotlib.stackplot as mstack |
|
import matplotlib.streamplot as mstream |
|
|
|
import datetime |
|
import PIL.Image |
|
from collections.abc import Callable, Iterable, Sequence |
|
from typing import Any, Literal, overload |
|
import numpy as np |
|
from numpy.typing import ArrayLike |
|
from matplotlib.typing import ColorType, MarkerType, LineStyleType |
|
|
|
class Axes(_AxesBase): |
|
def get_title(self, loc: Literal["left", "center", "right"] = ...) -> str: ... |
|
def set_title( |
|
self, |
|
label: str, |
|
fontdict: dict[str, Any] | None = ..., |
|
loc: Literal["left", "center", "right"] | None = ..., |
|
pad: float | None = ..., |
|
*, |
|
y: float | None = ..., |
|
**kwargs |
|
) -> Text: ... |
|
def get_legend_handles_labels( |
|
self, legend_handler_map: dict[type, HandlerBase] | None = ... |
|
) -> tuple[list[Artist], list[Any]]: ... |
|
legend_: Legend | None |
|
|
|
@overload |
|
def legend(self) -> Legend: ... |
|
@overload |
|
def legend(self, handles: Iterable[Artist | tuple[Artist, ...]], labels: Iterable[str], **kwargs) -> Legend: ... |
|
@overload |
|
def legend(self, *, handles: Iterable[Artist | tuple[Artist, ...]], **kwargs) -> Legend: ... |
|
@overload |
|
def legend(self, labels: Iterable[str], **kwargs) -> Legend: ... |
|
@overload |
|
def legend(self, **kwargs) -> Legend: ... |
|
|
|
def inset_axes( |
|
self, |
|
bounds: tuple[float, float, float, float], |
|
*, |
|
transform: Transform | None = ..., |
|
zorder: float = ..., |
|
**kwargs |
|
) -> Axes: ... |
|
def indicate_inset( |
|
self, |
|
bounds: tuple[float, float, float, float], |
|
inset_ax: Axes | None = ..., |
|
*, |
|
transform: Transform | None = ..., |
|
facecolor: ColorType = ..., |
|
edgecolor: ColorType = ..., |
|
alpha: float = ..., |
|
zorder: float = ..., |
|
**kwargs |
|
) -> Rectangle: ... |
|
def indicate_inset_zoom(self, inset_ax: Axes, **kwargs) -> Rectangle: ... |
|
def secondary_xaxis( |
|
self, |
|
location: Literal["top", "bottom"] | float, |
|
*, |
|
functions: tuple[ |
|
Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike] |
|
] |
|
| Transform |
|
| None = ..., |
|
**kwargs |
|
) -> SecondaryAxis: ... |
|
def secondary_yaxis( |
|
self, |
|
location: Literal["left", "right"] | float, |
|
*, |
|
functions: tuple[ |
|
Callable[[ArrayLike], ArrayLike], Callable[[ArrayLike], ArrayLike] |
|
] |
|
| Transform |
|
| None = ..., |
|
**kwargs |
|
) -> SecondaryAxis: ... |
|
def text( |
|
self, |
|
x: float, |
|
y: float, |
|
s: str, |
|
fontdict: dict[str, Any] | None = ..., |
|
**kwargs |
|
) -> Text: ... |
|
def annotate( |
|
self, |
|
text: str, |
|
xy: tuple[float, float], |
|
xytext: tuple[float, float] | None = ..., |
|
xycoords: str |
|
| Artist |
|
| Transform |
|
| Callable[[RendererBase], Bbox | Transform] |
|
| tuple[float, float] = ..., |
|
textcoords: str |
|
| Artist |
|
| Transform |
|
| Callable[[RendererBase], Bbox | Transform] |
|
| tuple[float, float] |
|
| None = ..., |
|
arrowprops: dict[str, Any] | None = ..., |
|
annotation_clip: bool | None = ..., |
|
**kwargs |
|
) -> Annotation: ... |
|
def axhline( |
|
self, y: float = ..., xmin: float = ..., xmax: float = ..., **kwargs |
|
) -> Line2D: ... |
|
def axvline( |
|
self, x: float = ..., ymin: float = ..., ymax: float = ..., **kwargs |
|
) -> Line2D: ... |
|
|
|
# TODO: Could separate the xy2 and slope signatures |
|
def axline( |
|
self, |
|
xy1: tuple[float, float], |
|
xy2: tuple[float, float] | None = ..., |
|
*, |
|
slope: float | None = ..., |
|
**kwargs |
|
) -> AxLine: ... |
|
def axhspan( |
|
self, ymin: float, ymax: float, xmin: float = ..., xmax: float = ..., **kwargs |
|
) -> Polygon: ... |
|
def axvspan( |
|
self, xmin: float, xmax: float, ymin: float = ..., ymax: float = ..., **kwargs |
|
) -> Polygon: ... |
|
def hlines( |
|
self, |
|
y: float | ArrayLike, |
|
xmin: float | ArrayLike, |
|
xmax: float | ArrayLike, |
|
colors: ColorType | Sequence[ColorType] | None = ..., |
|
linestyles: LineStyleType = ..., |
|
label: str = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> LineCollection: ... |
|
def vlines( |
|
self, |
|
x: float | ArrayLike, |
|
ymin: float | ArrayLike, |
|
ymax: float | ArrayLike, |
|
colors: ColorType | Sequence[ColorType] | None = ..., |
|
linestyles: LineStyleType = ..., |
|
label: str = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> LineCollection: ... |
|
def eventplot( |
|
self, |
|
positions: ArrayLike | Sequence[ArrayLike], |
|
orientation: Literal["horizontal", "vertical"] = ..., |
|
lineoffsets: float | Sequence[float] = ..., |
|
linelengths: float | Sequence[float] = ..., |
|
linewidths: float | Sequence[float] | None = ..., |
|
colors: ColorType | Sequence[ColorType] | None = ..., |
|
alpha: float | Sequence[float] | None = ..., |
|
linestyles: LineStyleType | Sequence[LineStyleType] = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> EventCollection: ... |
|
def plot( |
|
self, |
|
*args: float | ArrayLike | str, |
|
scalex: bool = ..., |
|
scaley: bool = ..., |
|
data = ..., |
|
**kwargs |
|
) -> list[Line2D]: ... |
|
def plot_date( |
|
self, |
|
x: ArrayLike, |
|
y: ArrayLike, |
|
fmt: str = ..., |
|
tz: str | datetime.tzinfo | None = ..., |
|
xdate: bool = ..., |
|
ydate: bool = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> list[Line2D]: ... |
|
def loglog(self, *args, **kwargs) -> list[Line2D]: ... |
|
def semilogx(self, *args, **kwargs) -> list[Line2D]: ... |
|
def semilogy(self, *args, **kwargs) -> list[Line2D]: ... |
|
def acorr( |
|
self, x: ArrayLike, *, data=..., **kwargs |
|
) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]: ... |
|
def xcorr( |
|
self, |
|
x: ArrayLike, |
|
y: ArrayLike, |
|
normed: bool = ..., |
|
detrend: Callable[[ArrayLike], ArrayLike] = ..., |
|
usevlines: bool = ..., |
|
maxlags: int = ..., |
|
*, |
|
data = ..., |
|
**kwargs |
|
) -> tuple[np.ndarray, np.ndarray, LineCollection | Line2D, Line2D | None]: ... |
|
def step( |
|
self, |
|
x: ArrayLike, |
|
y: ArrayLike, |
|
*args, |
|
where: Literal["pre", "post", "mid"] = ..., |
|
data = ..., |
|
**kwargs |
|
) -> list[Line2D]: ... |
|
def bar( |
|
self, |
|
x: float | ArrayLike, |
|
height: float | ArrayLike, |
|
width: float | ArrayLike = ..., |
|
bottom: float | ArrayLike | None = ..., |
|
*, |
|
align: Literal["center", "edge"] = ..., |
|
data = ..., |
|
**kwargs |
|
) -> BarContainer: ... |
|
def barh( |
|
self, |
|
y: float | ArrayLike, |
|
width: float | ArrayLike, |
|
height: float | ArrayLike = ..., |
|
left: float | ArrayLike | None = ..., |
|
*, |
|
align: Literal["center", "edge"] = ..., |
|
data = ..., |
|
**kwargs |
|
) -> BarContainer: ... |
|
def bar_label( |
|
self, |
|
container: BarContainer, |
|
labels: ArrayLike | None = ..., |
|
*, |
|
fmt: str | Callable[[float], str] = ..., |
|
label_type: Literal["center", "edge"] = ..., |
|
padding: float = ..., |
|
**kwargs |
|
) -> list[Annotation]: ... |
|
def broken_barh( |
|
self, |
|
xranges: Sequence[tuple[float, float]], |
|
yrange: tuple[float, float], |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> BrokenBarHCollection: ... |
|
def stem( |
|
self, |
|
*args: ArrayLike | str, |
|
linefmt: str | None = ..., |
|
markerfmt: str | None = ..., |
|
basefmt: str | None = ..., |
|
bottom: float = ..., |
|
label: str | None = ..., |
|
orientation: Literal["vertical", "horizontal"] = ..., |
|
data=..., |
|
) -> StemContainer: ... |
|
|
|
# TODO: data kwarg preprocessor? |
|
def pie( |
|
self, |
|
x: ArrayLike, |
|
explode: ArrayLike | None = ..., |
|
labels: Sequence[str] | None = ..., |
|
colors: ColorType | Sequence[ColorType] | None = ..., |
|
autopct: str | Callable[[float], str] | None = ..., |
|
pctdistance: float = ..., |
|
shadow: bool = ..., |
|
labeldistance: float | None = ..., |
|
startangle: float = ..., |
|
radius: float = ..., |
|
counterclock: bool = ..., |
|
wedgeprops: dict[str, Any] | None = ..., |
|
textprops: dict[str, Any] | None = ..., |
|
center: tuple[float, float] = ..., |
|
frame: bool = ..., |
|
rotatelabels: bool = ..., |
|
*, |
|
normalize: bool = ..., |
|
hatch: str | Sequence[str] | None = ..., |
|
data=..., |
|
) -> tuple[list[Wedge], list[Text]] | tuple[ |
|
list[Wedge], list[Text], list[Text] |
|
]: ... |
|
def errorbar( |
|
self, |
|
x: float | ArrayLike, |
|
y: float | ArrayLike, |
|
yerr: float | ArrayLike | None = ..., |
|
xerr: float | ArrayLike | None = ..., |
|
fmt: str = ..., |
|
ecolor: ColorType | None = ..., |
|
elinewidth: float | None = ..., |
|
capsize: float | None = ..., |
|
barsabove: bool = ..., |
|
lolims: bool | ArrayLike = ..., |
|
uplims: bool | ArrayLike = ..., |
|
xlolims: bool | ArrayLike = ..., |
|
xuplims: bool | ArrayLike = ..., |
|
errorevery: int | tuple[int, int] = ..., |
|
capthick: float | None = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> ErrorbarContainer: ... |
|
def boxplot( |
|
self, |
|
x: ArrayLike | Sequence[ArrayLike], |
|
notch: bool | None = ..., |
|
sym: str | None = ..., |
|
vert: bool | None = ..., |
|
whis: float | tuple[float, float] | None = ..., |
|
positions: ArrayLike | None = ..., |
|
widths: float | ArrayLike | None = ..., |
|
patch_artist: bool | None = ..., |
|
bootstrap: int | None = ..., |
|
usermedians: ArrayLike | None = ..., |
|
conf_intervals: ArrayLike | None = ..., |
|
meanline: bool | None = ..., |
|
showmeans: bool | None = ..., |
|
showcaps: bool | None = ..., |
|
showbox: bool | None = ..., |
|
showfliers: bool | None = ..., |
|
boxprops: dict[str, Any] | None = ..., |
|
labels: Sequence[str] | None = ..., |
|
flierprops: dict[str, Any] | None = ..., |
|
medianprops: dict[str, Any] | None = ..., |
|
meanprops: dict[str, Any] | None = ..., |
|
capprops: dict[str, Any] | None = ..., |
|
whiskerprops: dict[str, Any] | None = ..., |
|
manage_ticks: bool = ..., |
|
autorange: bool = ..., |
|
zorder: float | None = ..., |
|
capwidths: float | ArrayLike | None = ..., |
|
*, |
|
data=..., |
|
) -> dict[str, Any]: ... |
|
def bxp( |
|
self, |
|
bxpstats: Sequence[dict[str, Any]], |
|
positions: ArrayLike | None = ..., |
|
widths: float | ArrayLike | None = ..., |
|
vert: bool = ..., |
|
patch_artist: bool = ..., |
|
shownotches: bool = ..., |
|
showmeans: bool = ..., |
|
showcaps: bool = ..., |
|
showbox: bool = ..., |
|
showfliers: bool = ..., |
|
boxprops: dict[str, Any] | None = ..., |
|
whiskerprops: dict[str, Any] | None = ..., |
|
flierprops: dict[str, Any] | None = ..., |
|
medianprops: dict[str, Any] | None = ..., |
|
capprops: dict[str, Any] | None = ..., |
|
meanprops: dict[str, Any] | None = ..., |
|
meanline: bool = ..., |
|
manage_ticks: bool = ..., |
|
zorder: float | None = ..., |
|
capwidths: float | ArrayLike | None = ..., |
|
) -> dict[str, Any]: ... |
|
def scatter( |
|
self, |
|
x: float | ArrayLike, |
|
y: float | ArrayLike, |
|
s: float | ArrayLike | None = ..., |
|
c: ArrayLike | Sequence[ColorType] | ColorType | None = ..., |
|
marker: MarkerType | None = ..., |
|
cmap: str | Colormap | None = ..., |
|
norm: str | Normalize | None = ..., |
|
vmin: float | None = ..., |
|
vmax: float | None = ..., |
|
alpha: float | None = ..., |
|
linewidths: float | Sequence[float] | None = ..., |
|
*, |
|
edgecolors: Literal["face", "none"] | ColorType | Sequence[ColorType] | None = ..., |
|
plotnonfinite: bool = ..., |
|
data=..., |
|
**kwargs |
|
) -> PathCollection: ... |
|
def hexbin( |
|
self, |
|
x: ArrayLike, |
|
y: ArrayLike, |
|
C: ArrayLike | None = ..., |
|
gridsize: int | tuple[int, int] = ..., |
|
bins: Literal["log"] | int | Sequence[float] | None = ..., |
|
xscale: Literal["linear", "log"] = ..., |
|
yscale: Literal["linear", "log"] = ..., |
|
extent: tuple[float, float, float, float] | None = ..., |
|
cmap: str | Colormap | None = ..., |
|
norm: str | Normalize | None = ..., |
|
vmin: float | None = ..., |
|
vmax: float | None = ..., |
|
alpha: float | None = ..., |
|
linewidths: float | None = ..., |
|
edgecolors: Literal["face", "none"] | ColorType = ..., |
|
reduce_C_function: Callable[[np.ndarray | list[float]], float] = ..., |
|
mincnt: int | None = ..., |
|
marginals: bool = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> PolyCollection: ... |
|
def arrow( |
|
self, x: float, y: float, dx: float, dy: float, **kwargs |
|
) -> FancyArrow: ... |
|
def quiverkey( |
|
self, Q: Quiver, X: float, Y: float, U: float, label: str, **kwargs |
|
) -> QuiverKey: ... |
|
def quiver(self, *args, data=..., **kwargs) -> Quiver: ... |
|
def barbs(self, *args, data=..., **kwargs) -> Barbs: ... |
|
def fill(self, *args, data=..., **kwargs) -> list[Polygon]: ... |
|
def fill_between( |
|
self, |
|
x: ArrayLike, |
|
y1: ArrayLike | float, |
|
y2: ArrayLike | float = ..., |
|
where: Sequence[bool] | None = ..., |
|
interpolate: bool = ..., |
|
step: Literal["pre", "post", "mid"] | None = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> PolyCollection: ... |
|
def fill_betweenx( |
|
self, |
|
y: ArrayLike, |
|
x1: ArrayLike | float, |
|
x2: ArrayLike | float = ..., |
|
where: Sequence[bool] | None = ..., |
|
step: Literal["pre", "post", "mid"] | None = ..., |
|
interpolate: bool = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> PolyCollection: ... |
|
def imshow( |
|
self, |
|
X: ArrayLike | PIL.Image.Image, |
|
cmap: str | Colormap | None = ..., |
|
norm: str | Normalize | None = ..., |
|
*, |
|
aspect: Literal["equal", "auto"] | float | None = ..., |
|
interpolation: str | None = ..., |
|
alpha: float | ArrayLike | None = ..., |
|
vmin: float | None = ..., |
|
vmax: float | None = ..., |
|
origin: Literal["upper", "lower"] | None = ..., |
|
extent: tuple[float, float, float, float] | None = ..., |
|
interpolation_stage: Literal["data", "rgba"] | None = ..., |
|
filternorm: bool = ..., |
|
filterrad: float = ..., |
|
resample: bool | None = ..., |
|
url: str | None = ..., |
|
data=..., |
|
**kwargs |
|
) -> AxesImage: ... |
|
def pcolor( |
|
self, |
|
*args: ArrayLike, |
|
shading: Literal["flat", "nearest", "auto"] | None = ..., |
|
alpha: float | None = ..., |
|
norm: str | Normalize | None = ..., |
|
cmap: str | Colormap | None = ..., |
|
vmin: float | None = ..., |
|
vmax: float | None = ..., |
|
data=..., |
|
**kwargs |
|
) -> Collection: ... |
|
def pcolormesh( |
|
self, |
|
*args: ArrayLike, |
|
alpha: float | None = ..., |
|
norm: str | Normalize | None = ..., |
|
cmap: str | Colormap | None = ..., |
|
vmin: float | None = ..., |
|
vmax: float | None = ..., |
|
shading: Literal["flat", "nearest", "gouraud", "auto"] | None = ..., |
|
antialiased: bool = ..., |
|
data=..., |
|
**kwargs |
|
) -> QuadMesh: ... |
|
def pcolorfast( |
|
self, |
|
*args: ArrayLike | tuple[float, float], |
|
alpha: float | None = ..., |
|
norm: str | Normalize | None = ..., |
|
cmap: str | Colormap | None = ..., |
|
vmin: float | None = ..., |
|
vmax: float | None = ..., |
|
data=..., |
|
**kwargs |
|
) -> AxesImage | PcolorImage | QuadMesh: ... |
|
def contour(self, *args, data=..., **kwargs) -> QuadContourSet: ... |
|
def contourf(self, *args, data=..., **kwargs) -> QuadContourSet: ... |
|
def clabel( |
|
self, CS: ContourSet, levels: ArrayLike | None = ..., **kwargs |
|
) -> list[Text]: ... |
|
def hist( |
|
self, |
|
x: ArrayLike | Sequence[ArrayLike], |
|
bins: int | Sequence[float] | str | None = ..., |
|
range: tuple[float, float] | None = ..., |
|
density: bool = ..., |
|
weights: ArrayLike | None = ..., |
|
cumulative: bool | float = ..., |
|
bottom: ArrayLike | float | None = ..., |
|
histtype: Literal["bar", "barstacked", "step", "stepfilled"] = ..., |
|
align: Literal["left", "mid", "right"] = ..., |
|
orientation: Literal["vertical", "horizontal"] = ..., |
|
rwidth: float | None = ..., |
|
log: bool = ..., |
|
color: ColorType | Sequence[ColorType] | None = ..., |
|
label: str | Sequence[str] | None = ..., |
|
stacked: bool = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> tuple[ |
|
np.ndarray | list[np.ndarray], |
|
np.ndarray, |
|
BarContainer | Polygon | list[BarContainer | Polygon], |
|
]: ... |
|
def stairs( |
|
self, |
|
values: ArrayLike, |
|
edges: ArrayLike | None = ..., |
|
*, |
|
orientation: Literal["vertical", "horizontal"] = ..., |
|
baseline: float | ArrayLike | None = ..., |
|
fill: bool = ..., |
|
data=..., |
|
**kwargs |
|
) -> StepPatch: ... |
|
def hist2d( |
|
self, |
|
x: ArrayLike, |
|
y: ArrayLike, |
|
bins: None |
|
| int |
|
| tuple[int, int] |
|
| ArrayLike |
|
| tuple[ArrayLike, ArrayLike] = ..., |
|
range: ArrayLike | None = ..., |
|
density: bool = ..., |
|
weights: ArrayLike | None = ..., |
|
cmin: float | None = ..., |
|
cmax: float | None = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray, QuadMesh]: ... |
|
def ecdf( |
|
self, |
|
x: ArrayLike, |
|
weights: ArrayLike | None = ..., |
|
*, |
|
complementary: bool=..., |
|
orientation: Literal["vertical", "horizonatal"]=..., |
|
compress: bool=..., |
|
data=..., |
|
**kwargs |
|
) -> Line2D: ... |
|
def psd( |
|
self, |
|
x: ArrayLike, |
|
NFFT: int | None = ..., |
|
Fs: float | None = ..., |
|
Fc: int | None = ..., |
|
detrend: Literal["none", "mean", "linear"] |
|
| Callable[[ArrayLike], ArrayLike] |
|
| None = ..., |
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., |
|
noverlap: int | None = ..., |
|
pad_to: int | None = ..., |
|
sides: Literal["default", "onesided", "twosided"] | None = ..., |
|
scale_by_freq: bool | None = ..., |
|
return_line: bool | None = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]: ... |
|
def csd( |
|
self, |
|
x: ArrayLike, |
|
y: ArrayLike, |
|
NFFT: int | None = ..., |
|
Fs: float | None = ..., |
|
Fc: int | None = ..., |
|
detrend: Literal["none", "mean", "linear"] |
|
| Callable[[ArrayLike], ArrayLike] |
|
| None = ..., |
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., |
|
noverlap: int | None = ..., |
|
pad_to: int | None = ..., |
|
sides: Literal["default", "onesided", "twosided"] | None = ..., |
|
scale_by_freq: bool | None = ..., |
|
return_line: bool | None = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> tuple[np.ndarray, np.ndarray] | tuple[np.ndarray, np.ndarray, Line2D]: ... |
|
def magnitude_spectrum( |
|
self, |
|
x: ArrayLike, |
|
Fs: float | None = ..., |
|
Fc: int | None = ..., |
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., |
|
pad_to: int | None = ..., |
|
sides: Literal["default", "onesided", "twosided"] | None = ..., |
|
scale: Literal["default", "linear", "dB"] | None = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> tuple[np.ndarray, np.ndarray, Line2D]: ... |
|
def angle_spectrum( |
|
self, |
|
x: ArrayLike, |
|
Fs: float | None = ..., |
|
Fc: int | None = ..., |
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., |
|
pad_to: int | None = ..., |
|
sides: Literal["default", "onesided", "twosided"] | None = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> tuple[np.ndarray, np.ndarray, Line2D]: ... |
|
def phase_spectrum( |
|
self, |
|
x: ArrayLike, |
|
Fs: float | None = ..., |
|
Fc: int | None = ..., |
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., |
|
pad_to: int | None = ..., |
|
sides: Literal["default", "onesided", "twosided"] | None = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> tuple[np.ndarray, np.ndarray, Line2D]: ... |
|
def cohere( |
|
self, |
|
x: ArrayLike, |
|
y: ArrayLike, |
|
NFFT: int = ..., |
|
Fs: float = ..., |
|
Fc: int = ..., |
|
detrend: Literal["none", "mean", "linear"] |
|
| Callable[[ArrayLike], ArrayLike] = ..., |
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike = ..., |
|
noverlap: int = ..., |
|
pad_to: int | None = ..., |
|
sides: Literal["default", "onesided", "twosided"] = ..., |
|
scale_by_freq: bool | None = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> tuple[np.ndarray, np.ndarray]: ... |
|
def specgram( |
|
self, |
|
x: ArrayLike, |
|
NFFT: int | None = ..., |
|
Fs: float | None = ..., |
|
Fc: int | None = ..., |
|
detrend: Literal["none", "mean", "linear"] |
|
| Callable[[ArrayLike], ArrayLike] |
|
| None = ..., |
|
window: Callable[[ArrayLike], ArrayLike] | ArrayLike | None = ..., |
|
noverlap: int | None = ..., |
|
cmap: str | Colormap | None = ..., |
|
xextent: tuple[float, float] | None = ..., |
|
pad_to: int | None = ..., |
|
sides: Literal["default", "onesided", "twosided"] | None = ..., |
|
scale_by_freq: bool | None = ..., |
|
mode: Literal["default", "psd", "magnitude", "angle", "phase"] | None = ..., |
|
scale: Literal["default", "linear", "dB"] | None = ..., |
|
vmin: float | None = ..., |
|
vmax: float | None = ..., |
|
*, |
|
data=..., |
|
**kwargs |
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray, AxesImage]: ... |
|
def spy( |
|
self, |
|
Z: ArrayLike, |
|
precision: float | Literal["present"] = ..., |
|
marker: str | None = ..., |
|
markersize: float | None = ..., |
|
aspect: Literal["equal", "auto"] | float | None = ..., |
|
origin: Literal["upper", "lower"] = ..., |
|
**kwargs |
|
) -> AxesImage: ... |
|
def matshow(self, Z: ArrayLike, **kwargs) -> AxesImage: ... |
|
def violinplot( |
|
self, |
|
dataset: ArrayLike | Sequence[ArrayLike], |
|
positions: ArrayLike | None = ..., |
|
vert: bool = ..., |
|
widths: float | ArrayLike = ..., |
|
showmeans: bool = ..., |
|
showextrema: bool = ..., |
|
showmedians: bool = ..., |
|
quantiles: Sequence[float | Sequence[float]] | None = ..., |
|
points: int = ..., |
|
bw_method: Literal["scott", "silverman"] |
|
| float |
|
| Callable[[GaussianKDE], float] |
|
| None = ..., |
|
*, |
|
data=..., |
|
) -> dict[str, Collection]: ... |
|
def violin( |
|
self, |
|
vpstats: Sequence[dict[str, Any]], |
|
positions: ArrayLike | None = ..., |
|
vert: bool = ..., |
|
widths: float | ArrayLike = ..., |
|
showmeans: bool = ..., |
|
showextrema: bool = ..., |
|
showmedians: bool = ..., |
|
) -> dict[str, Collection]: ... |
|
|
|
table = mtable.table |
|
stackplot = mstack.stackplot |
|
streamplot = mstream.streamplot |
|
tricontour = mtri.tricontour |
|
tricontourf = mtri.tricontourf |
|
tripcolor = mtri.tripcolor |
|
triplot = mtri.triplot |
|
|