|
import builtins |
|
import sys |
|
import os |
|
import mmap |
|
import ctypes as ct |
|
import array as _array |
|
import datetime as dt |
|
import enum |
|
from abc import abstractmethod |
|
from types import TracebackType, MappingProxyType, GenericAlias |
|
from contextlib import ContextDecorator |
|
from contextlib import contextmanager |
|
|
|
from numpy._pytesttester import PytestTester |
|
from numpy.core._internal import _ctypes |
|
|
|
from numpy._typing import ( |
|
# Arrays |
|
ArrayLike, |
|
NDArray, |
|
_SupportsArray, |
|
_NestedSequence, |
|
_FiniteNestedSequence, |
|
_SupportsArray, |
|
_ArrayLikeBool_co, |
|
_ArrayLikeUInt_co, |
|
_ArrayLikeInt_co, |
|
_ArrayLikeFloat_co, |
|
_ArrayLikeComplex_co, |
|
_ArrayLikeNumber_co, |
|
_ArrayLikeTD64_co, |
|
_ArrayLikeDT64_co, |
|
_ArrayLikeObject_co, |
|
_ArrayLikeStr_co, |
|
_ArrayLikeBytes_co, |
|
_ArrayLikeUnknown, |
|
_UnknownType, |
|
|
|
# DTypes |
|
DTypeLike, |
|
_DTypeLike, |
|
_DTypeLikeVoid, |
|
_SupportsDType, |
|
_VoidDTypeLike, |
|
|
|
# Shapes |
|
_Shape, |
|
_ShapeLike, |
|
|
|
# Scalars |
|
_CharLike_co, |
|
_BoolLike_co, |
|
_IntLike_co, |
|
_FloatLike_co, |
|
_ComplexLike_co, |
|
_TD64Like_co, |
|
_NumberLike_co, |
|
_ScalarLike_co, |
|
|
|
# `number` precision |
|
NBitBase, |
|
_256Bit, |
|
_128Bit, |
|
_96Bit, |
|
_80Bit, |
|
_64Bit, |
|
_32Bit, |
|
_16Bit, |
|
_8Bit, |
|
_NBitByte, |
|
_NBitShort, |
|
_NBitIntC, |
|
_NBitIntP, |
|
_NBitInt, |
|
_NBitLongLong, |
|
_NBitHalf, |
|
_NBitSingle, |
|
_NBitDouble, |
|
_NBitLongDouble, |
|
|
|
# Character codes |
|
_BoolCodes, |
|
_UInt8Codes, |
|
_UInt16Codes, |
|
_UInt32Codes, |
|
_UInt64Codes, |
|
_Int8Codes, |
|
_Int16Codes, |
|
_Int32Codes, |
|
_Int64Codes, |
|
_Float16Codes, |
|
_Float32Codes, |
|
_Float64Codes, |
|
_Complex64Codes, |
|
_Complex128Codes, |
|
_ByteCodes, |
|
_ShortCodes, |
|
_IntCCodes, |
|
_IntPCodes, |
|
_IntCodes, |
|
_LongLongCodes, |
|
_UByteCodes, |
|
_UShortCodes, |
|
_UIntCCodes, |
|
_UIntPCodes, |
|
_UIntCodes, |
|
_ULongLongCodes, |
|
_HalfCodes, |
|
_SingleCodes, |
|
_DoubleCodes, |
|
_LongDoubleCodes, |
|
_CSingleCodes, |
|
_CDoubleCodes, |
|
_CLongDoubleCodes, |
|
_DT64Codes, |
|
_TD64Codes, |
|
_StrCodes, |
|
_BytesCodes, |
|
_VoidCodes, |
|
_ObjectCodes, |
|
|
|
# Ufuncs |
|
_UFunc_Nin1_Nout1, |
|
_UFunc_Nin2_Nout1, |
|
_UFunc_Nin1_Nout2, |
|
_UFunc_Nin2_Nout2, |
|
_GUFunc_Nin2_Nout1, |
|
) |
|
|
|
from numpy._typing._callable import ( |
|
_BoolOp, |
|
_BoolBitOp, |
|
_BoolSub, |
|
_BoolTrueDiv, |
|
_BoolMod, |
|
_BoolDivMod, |
|
_TD64Div, |
|
_IntTrueDiv, |
|
_UnsignedIntOp, |
|
_UnsignedIntBitOp, |
|
_UnsignedIntMod, |
|
_UnsignedIntDivMod, |
|
_SignedIntOp, |
|
_SignedIntBitOp, |
|
_SignedIntMod, |
|
_SignedIntDivMod, |
|
_FloatOp, |
|
_FloatMod, |
|
_FloatDivMod, |
|
_ComplexOp, |
|
_NumberOp, |
|
_ComparisonOp, |
|
) |
|
|
|
# NOTE: Numpy's mypy plugin is used for removing the types unavailable |
|
# to the specific platform |
|
from numpy._typing._extended_precision import ( |
|
uint128 as uint128, |
|
uint256 as uint256, |
|
int128 as int128, |
|
int256 as int256, |
|
float80 as float80, |
|
float96 as float96, |
|
float128 as float128, |
|
float256 as float256, |
|
complex160 as complex160, |
|
complex192 as complex192, |
|
complex256 as complex256, |
|
complex512 as complex512, |
|
) |
|
|
|
from collections.abc import ( |
|
Callable, |
|
Container, |
|
Iterable, |
|
Iterator, |
|
Mapping, |
|
Sequence, |
|
Sized, |
|
) |
|
from typing import ( |
|
Literal as L, |
|
Any, |
|
Generator, |
|
Generic, |
|
IO, |
|
NoReturn, |
|
overload, |
|
SupportsComplex, |
|
SupportsFloat, |
|
SupportsInt, |
|
TypeVar, |
|
Union, |
|
Protocol, |
|
SupportsIndex, |
|
Final, |
|
final, |
|
ClassVar, |
|
) |
|
|
|
# Ensures that the stubs are picked up |
|
from numpy import ( |
|
ctypeslib as ctypeslib, |
|
exceptions as exceptions, |
|
fft as fft, |
|
lib as lib, |
|
linalg as linalg, |
|
ma as ma, |
|
polynomial as polynomial, |
|
random as random, |
|
testing as testing, |
|
version as version, |
|
exceptions as exceptions, |
|
dtypes as dtypes, |
|
) |
|
|
|
from numpy.core import defchararray, records |
|
char = defchararray |
|
rec = records |
|
|
|
from numpy.core.function_base import ( |
|
linspace as linspace, |
|
logspace as logspace, |
|
geomspace as geomspace, |
|
) |
|
|
|
from numpy.core.fromnumeric import ( |
|
take as take, |
|
reshape as reshape, |
|
choose as choose, |
|
repeat as repeat, |
|
put as put, |
|
swapaxes as swapaxes, |
|
transpose as transpose, |
|
partition as partition, |
|
argpartition as argpartition, |
|
sort as sort, |
|
argsort as argsort, |
|
argmax as argmax, |
|
argmin as argmin, |
|
searchsorted as searchsorted, |
|
resize as resize, |
|
squeeze as squeeze, |
|
diagonal as diagonal, |
|
trace as trace, |
|
ravel as ravel, |
|
nonzero as nonzero, |
|
shape as shape, |
|
compress as compress, |
|
clip as clip, |
|
sum as sum, |
|
all as all, |
|
any as any, |
|
cumsum as cumsum, |
|
ptp as ptp, |
|
max as max, |
|
min as min, |
|
amax as amax, |
|
amin as amin, |
|
prod as prod, |
|
cumprod as cumprod, |
|
ndim as ndim, |
|
size as size, |
|
around as around, |
|
round as round, |
|
mean as mean, |
|
std as std, |
|
var as var, |
|
) |
|
|
|
from numpy.core._asarray import ( |
|
require as require, |
|
) |
|
|
|
from numpy.core._type_aliases import ( |
|
sctypes as sctypes, |
|
sctypeDict as sctypeDict, |
|
) |
|
|
|
from numpy.core._ufunc_config import ( |
|
seterr as seterr, |
|
geterr as geterr, |
|
setbufsize as setbufsize, |
|
getbufsize as getbufsize, |
|
seterrcall as seterrcall, |
|
geterrcall as geterrcall, |
|
_ErrKind, |
|
_ErrFunc, |
|
_ErrDictOptional, |
|
) |
|
|
|
from numpy.core.arrayprint import ( |
|
set_printoptions as set_printoptions, |
|
get_printoptions as get_printoptions, |
|
array2string as array2string, |
|
format_float_scientific as format_float_scientific, |
|
format_float_positional as format_float_positional, |
|
array_repr as array_repr, |
|
array_str as array_str, |
|
set_string_function as set_string_function, |
|
printoptions as printoptions, |
|
) |
|
|
|
from numpy.core.einsumfunc import ( |
|
einsum as einsum, |
|
einsum_path as einsum_path, |
|
) |
|
|
|
from numpy.core.multiarray import ( |
|
ALLOW_THREADS as ALLOW_THREADS, |
|
BUFSIZE as BUFSIZE, |
|
CLIP as CLIP, |
|
MAXDIMS as MAXDIMS, |
|
MAY_SHARE_BOUNDS as MAY_SHARE_BOUNDS, |
|
MAY_SHARE_EXACT as MAY_SHARE_EXACT, |
|
RAISE as RAISE, |
|
WRAP as WRAP, |
|
tracemalloc_domain as tracemalloc_domain, |
|
array as array, |
|
empty_like as empty_like, |
|
empty as empty, |
|
zeros as zeros, |
|
concatenate as concatenate, |
|
inner as inner, |
|
where as where, |
|
lexsort as lexsort, |
|
can_cast as can_cast, |
|
min_scalar_type as min_scalar_type, |
|
result_type as result_type, |
|
dot as dot, |
|
vdot as vdot, |
|
bincount as bincount, |
|
copyto as copyto, |
|
putmask as putmask, |
|
packbits as packbits, |
|
unpackbits as unpackbits, |
|
shares_memory as shares_memory, |
|
may_share_memory as may_share_memory, |
|
asarray as asarray, |
|
asanyarray as asanyarray, |
|
ascontiguousarray as ascontiguousarray, |
|
asfortranarray as asfortranarray, |
|
arange as arange, |
|
busday_count as busday_count, |
|
busday_offset as busday_offset, |
|
compare_chararrays as compare_chararrays, |
|
datetime_as_string as datetime_as_string, |
|
datetime_data as datetime_data, |
|
frombuffer as frombuffer, |
|
fromfile as fromfile, |
|
fromiter as fromiter, |
|
is_busday as is_busday, |
|
promote_types as promote_types, |
|
seterrobj as seterrobj, |
|
geterrobj as geterrobj, |
|
fromstring as fromstring, |
|
frompyfunc as frompyfunc, |
|
nested_iters as nested_iters, |
|
flagsobj, |
|
) |
|
|
|
from numpy.core.numeric import ( |
|
zeros_like as zeros_like, |
|
ones as ones, |
|
ones_like as ones_like, |
|
full as full, |
|
full_like as full_like, |
|
count_nonzero as count_nonzero, |
|
isfortran as isfortran, |
|
argwhere as argwhere, |
|
flatnonzero as flatnonzero, |
|
correlate as correlate, |
|
convolve as convolve, |
|
outer as outer, |
|
tensordot as tensordot, |
|
roll as roll, |
|
rollaxis as rollaxis, |
|
moveaxis as moveaxis, |
|
cross as cross, |
|
indices as indices, |
|
fromfunction as fromfunction, |
|
isscalar as isscalar, |
|
binary_repr as binary_repr, |
|
base_repr as base_repr, |
|
identity as identity, |
|
allclose as allclose, |
|
isclose as isclose, |
|
array_equal as array_equal, |
|
array_equiv as array_equiv, |
|
) |
|
|
|
from numpy.core.numerictypes import ( |
|
maximum_sctype as maximum_sctype, |
|
issctype as issctype, |
|
obj2sctype as obj2sctype, |
|
issubclass_ as issubclass_, |
|
issubsctype as issubsctype, |
|
issubdtype as issubdtype, |
|
sctype2char as sctype2char, |
|
nbytes as nbytes, |
|
cast as cast, |
|
ScalarType as ScalarType, |
|
typecodes as typecodes, |
|
) |
|
|
|
from numpy.core.shape_base import ( |
|
atleast_1d as atleast_1d, |
|
atleast_2d as atleast_2d, |
|
atleast_3d as atleast_3d, |
|
block as block, |
|
hstack as hstack, |
|
stack as stack, |
|
vstack as vstack, |
|
) |
|
|
|
from numpy.exceptions import ( |
|
ComplexWarning as ComplexWarning, |
|
ModuleDeprecationWarning as ModuleDeprecationWarning, |
|
VisibleDeprecationWarning as VisibleDeprecationWarning, |
|
TooHardError as TooHardError, |
|
DTypePromotionError as DTypePromotionError, |
|
AxisError as AxisError, |
|
) |
|
|
|
from numpy.lib import ( |
|
emath as emath, |
|
) |
|
|
|
from numpy.lib.arraypad import ( |
|
pad as pad, |
|
) |
|
|
|
from numpy.lib.arraysetops import ( |
|
ediff1d as ediff1d, |
|
intersect1d as intersect1d, |
|
setxor1d as setxor1d, |
|
union1d as union1d, |
|
setdiff1d as setdiff1d, |
|
unique as unique, |
|
in1d as in1d, |
|
isin as isin, |
|
) |
|
|
|
from numpy.lib.arrayterator import ( |
|
Arrayterator as Arrayterator, |
|
) |
|
|
|
from numpy.lib.function_base import ( |
|
select as select, |
|
piecewise as piecewise, |
|
trim_zeros as trim_zeros, |
|
copy as copy, |
|
iterable as iterable, |
|
percentile as percentile, |
|
diff as diff, |
|
gradient as gradient, |
|
angle as angle, |
|
unwrap as unwrap, |
|
sort_complex as sort_complex, |
|
disp as disp, |
|
flip as flip, |
|
rot90 as rot90, |
|
extract as extract, |
|
place as place, |
|
asarray_chkfinite as asarray_chkfinite, |
|
average as average, |
|
bincount as bincount, |
|
digitize as digitize, |
|
cov as cov, |
|
corrcoef as corrcoef, |
|
median as median, |
|
sinc as sinc, |
|
hamming as hamming, |
|
hanning as hanning, |
|
bartlett as bartlett, |
|
blackman as blackman, |
|
kaiser as kaiser, |
|
trapz as trapz, |
|
i0 as i0, |
|
add_newdoc as add_newdoc, |
|
add_docstring as add_docstring, |
|
meshgrid as meshgrid, |
|
delete as delete, |
|
insert as insert, |
|
append as append, |
|
interp as interp, |
|
add_newdoc_ufunc as add_newdoc_ufunc, |
|
quantile as quantile, |
|
) |
|
|
|
from numpy.lib.histograms import ( |
|
histogram_bin_edges as histogram_bin_edges, |
|
histogram as histogram, |
|
histogramdd as histogramdd, |
|
) |
|
|
|
from numpy.lib.index_tricks import ( |
|
ravel_multi_index as ravel_multi_index, |
|
unravel_index as unravel_index, |
|
mgrid as mgrid, |
|
ogrid as ogrid, |
|
r_ as r_, |
|
c_ as c_, |
|
s_ as s_, |
|
index_exp as index_exp, |
|
ix_ as ix_, |
|
fill_diagonal as fill_diagonal, |
|
diag_indices as diag_indices, |
|
diag_indices_from as diag_indices_from, |
|
) |
|
|
|
from numpy.lib.nanfunctions import ( |
|
nansum as nansum, |
|
nanmax as nanmax, |
|
nanmin as nanmin, |
|
nanargmax as nanargmax, |
|
nanargmin as nanargmin, |
|
nanmean as nanmean, |
|
nanmedian as nanmedian, |
|
nanpercentile as nanpercentile, |
|
nanvar as nanvar, |
|
nanstd as nanstd, |
|
nanprod as nanprod, |
|
nancumsum as nancumsum, |
|
nancumprod as nancumprod, |
|
nanquantile as nanquantile, |
|
) |
|
|
|
from numpy.lib.npyio import ( |
|
savetxt as savetxt, |
|
loadtxt as loadtxt, |
|
genfromtxt as genfromtxt, |
|
recfromtxt as recfromtxt, |
|
recfromcsv as recfromcsv, |
|
load as load, |
|
save as save, |
|
savez as savez, |
|
savez_compressed as savez_compressed, |
|
packbits as packbits, |
|
unpackbits as unpackbits, |
|
fromregex as fromregex, |
|
) |
|
|
|
from numpy.lib.polynomial import ( |
|
poly as poly, |
|
roots as roots, |
|
polyint as polyint, |
|
polyder as polyder, |
|
polyadd as polyadd, |
|
polysub as polysub, |
|
polymul as polymul, |
|
polydiv as polydiv, |
|
polyval as polyval, |
|
polyfit as polyfit, |
|
) |
|
|
|
from numpy.lib.shape_base import ( |
|
column_stack as column_stack, |
|
row_stack as row_stack, |
|
dstack as dstack, |
|
array_split as array_split, |
|
split as split, |
|
hsplit as hsplit, |
|
vsplit as vsplit, |
|
dsplit as dsplit, |
|
apply_over_axes as apply_over_axes, |
|
expand_dims as expand_dims, |
|
apply_along_axis as apply_along_axis, |
|
kron as kron, |
|
tile as tile, |
|
get_array_wrap as get_array_wrap, |
|
take_along_axis as take_along_axis, |
|
put_along_axis as put_along_axis, |
|
) |
|
|
|
from numpy.lib.stride_tricks import ( |
|
broadcast_to as broadcast_to, |
|
broadcast_arrays as broadcast_arrays, |
|
broadcast_shapes as broadcast_shapes, |
|
) |
|
|
|
from numpy.lib.twodim_base import ( |
|
diag as diag, |
|
diagflat as diagflat, |
|
eye as eye, |
|
fliplr as fliplr, |
|
flipud as flipud, |
|
tri as tri, |
|
triu as triu, |
|
tril as tril, |
|
vander as vander, |
|
histogram2d as histogram2d, |
|
mask_indices as mask_indices, |
|
tril_indices as tril_indices, |
|
tril_indices_from as tril_indices_from, |
|
triu_indices as triu_indices, |
|
triu_indices_from as triu_indices_from, |
|
) |
|
|
|
from numpy.lib.type_check import ( |
|
mintypecode as mintypecode, |
|
asfarray as asfarray, |
|
real as real, |
|
imag as imag, |
|
iscomplex as iscomplex, |
|
isreal as isreal, |
|
iscomplexobj as iscomplexobj, |
|
isrealobj as isrealobj, |
|
nan_to_num as nan_to_num, |
|
real_if_close as real_if_close, |
|
typename as typename, |
|
common_type as common_type, |
|
) |
|
|
|
from numpy.lib.ufunclike import ( |
|
fix as fix, |
|
isposinf as isposinf, |
|
isneginf as isneginf, |
|
) |
|
|
|
from numpy.lib.utils import ( |
|
issubclass_ as issubclass_, |
|
issubsctype as issubsctype, |
|
issubdtype as issubdtype, |
|
deprecate as deprecate, |
|
deprecate_with_doc as deprecate_with_doc, |
|
get_include as get_include, |
|
info as info, |
|
source as source, |
|
who as who, |
|
lookfor as lookfor, |
|
byte_bounds as byte_bounds, |
|
safe_eval as safe_eval, |
|
show_runtime as show_runtime, |
|
) |
|
|
|
from numpy.matrixlib import ( |
|
asmatrix as asmatrix, |
|
mat as mat, |
|
bmat as bmat, |
|
) |
|
|
|
_AnyStr_contra = TypeVar("_AnyStr_contra", str, bytes, contravariant=True) |
|
|
|
# Protocol for representing file-like-objects accepted |
|
# by `ndarray.tofile` and `fromfile` |
|
class _IOProtocol(Protocol): |
|
def flush(self) -> object: ... |
|
def fileno(self) -> int: ... |
|
def tell(self) -> SupportsIndex: ... |
|
def seek(self, offset: int, whence: int, /) -> object: ... |
|
|
|
# NOTE: `seek`, `write` and `flush` are technically only required |
|
# for `readwrite`/`write` modes |
|
class _MemMapIOProtocol(Protocol): |
|
def flush(self) -> object: ... |
|
def fileno(self) -> SupportsIndex: ... |
|
def tell(self) -> int: ... |
|
def seek(self, offset: int, whence: int, /) -> object: ... |
|
def write(self, s: bytes, /) -> object: ... |
|
@property |
|
def read(self) -> object: ... |
|
|
|
class _SupportsWrite(Protocol[_AnyStr_contra]): |
|
def write(self, s: _AnyStr_contra, /) -> object: ... |
|
|
|
__all__: list[str] |
|
__path__: list[str] |
|
__version__: str |
|
test: PytestTester |
|
|
|
# TODO: Move placeholders to their respective module once |
|
# their annotations are properly implemented |
|
# |
|
# Placeholders for classes |
|
|
|
def show_config() -> None: ... |
|
|
|
_NdArraySubClass = TypeVar("_NdArraySubClass", bound=ndarray[Any, Any]) |
|
_DTypeScalar_co = TypeVar("_DTypeScalar_co", covariant=True, bound=generic) |
|
_ByteOrder = L["S", "<", ">", "=", "|", "L", "B", "N", "I"] |
|
|
|
@final |
|
class dtype(Generic[_DTypeScalar_co]): |
|
names: None | tuple[builtins.str, ...] |
|
def __hash__(self) -> int: ... |
|
# Overload for subclass of generic |
|
@overload |
|
def __new__( |
|
cls, |
|
dtype: type[_DTypeScalar_co], |
|
align: bool = ..., |
|
copy: bool = ..., |
|
metadata: dict[builtins.str, Any] = ..., |
|
) -> dtype[_DTypeScalar_co]: ... |
|
# Overloads for string aliases, Python types, and some assorted |
|
# other special cases. Order is sometimes important because of the |
|
# subtype relationships |
|
# |
|
# bool < int < float < complex < object |
|
# |
|
# so we have to make sure the overloads for the narrowest type is |
|
# first. |
|
# Builtin types |
|
@overload |
|
def __new__(cls, dtype: type[bool], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bool_]: ... |
|
@overload |
|
def __new__(cls, dtype: type[int], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int_]: ... |
|
@overload |
|
def __new__(cls, dtype: None | type[float], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float_]: ... |
|
@overload |
|
def __new__(cls, dtype: type[complex], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex_]: ... |
|
@overload |
|
def __new__(cls, dtype: type[builtins.str], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[str_]: ... |
|
@overload |
|
def __new__(cls, dtype: type[bytes], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bytes_]: ... |
|
|
|
# `unsignedinteger` string-based representations and ctypes |
|
@overload |
|
def __new__(cls, dtype: _UInt8Codes | type[ct.c_uint8], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint8]: ... |
|
@overload |
|
def __new__(cls, dtype: _UInt16Codes | type[ct.c_uint16], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint16]: ... |
|
@overload |
|
def __new__(cls, dtype: _UInt32Codes | type[ct.c_uint32], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint32]: ... |
|
@overload |
|
def __new__(cls, dtype: _UInt64Codes | type[ct.c_uint64], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint64]: ... |
|
@overload |
|
def __new__(cls, dtype: _UByteCodes | type[ct.c_ubyte], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ubyte]: ... |
|
@overload |
|
def __new__(cls, dtype: _UShortCodes | type[ct.c_ushort], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ushort]: ... |
|
@overload |
|
def __new__(cls, dtype: _UIntCCodes | type[ct.c_uint], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uintc]: ... |
|
|
|
# NOTE: We're assuming here that `uint_ptr_t == size_t`, |
|
# an assumption that does not hold in rare cases (same for `ssize_t`) |
|
@overload |
|
def __new__(cls, dtype: _UIntPCodes | type[ct.c_void_p] | type[ct.c_size_t], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uintp]: ... |
|
@overload |
|
def __new__(cls, dtype: _UIntCodes | type[ct.c_ulong], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint]: ... |
|
@overload |
|
def __new__(cls, dtype: _ULongLongCodes | type[ct.c_ulonglong], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ulonglong]: ... |
|
|
|
# `signedinteger` string-based representations and ctypes |
|
@overload |
|
def __new__(cls, dtype: _Int8Codes | type[ct.c_int8], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int8]: ... |
|
@overload |
|
def __new__(cls, dtype: _Int16Codes | type[ct.c_int16], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int16]: ... |
|
@overload |
|
def __new__(cls, dtype: _Int32Codes | type[ct.c_int32], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int32]: ... |
|
@overload |
|
def __new__(cls, dtype: _Int64Codes | type[ct.c_int64], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int64]: ... |
|
@overload |
|
def __new__(cls, dtype: _ByteCodes | type[ct.c_byte], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[byte]: ... |
|
@overload |
|
def __new__(cls, dtype: _ShortCodes | type[ct.c_short], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[short]: ... |
|
@overload |
|
def __new__(cls, dtype: _IntCCodes | type[ct.c_int], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[intc]: ... |
|
@overload |
|
def __new__(cls, dtype: _IntPCodes | type[ct.c_ssize_t], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[intp]: ... |
|
@overload |
|
def __new__(cls, dtype: _IntCodes | type[ct.c_long], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int_]: ... |
|
@overload |
|
def __new__(cls, dtype: _LongLongCodes | type[ct.c_longlong], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[longlong]: ... |
|
|
|
# `floating` string-based representations and ctypes |
|
@overload |
|
def __new__(cls, dtype: _Float16Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float16]: ... |
|
@overload |
|
def __new__(cls, dtype: _Float32Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float32]: ... |
|
@overload |
|
def __new__(cls, dtype: _Float64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float64]: ... |
|
@overload |
|
def __new__(cls, dtype: _HalfCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[half]: ... |
|
@overload |
|
def __new__(cls, dtype: _SingleCodes | type[ct.c_float], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[single]: ... |
|
@overload |
|
def __new__(cls, dtype: _DoubleCodes | type[ct.c_double], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[double]: ... |
|
@overload |
|
def __new__(cls, dtype: _LongDoubleCodes | type[ct.c_longdouble], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[longdouble]: ... |
|
|
|
# `complexfloating` string-based representations |
|
@overload |
|
def __new__(cls, dtype: _Complex64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex64]: ... |
|
@overload |
|
def __new__(cls, dtype: _Complex128Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex128]: ... |
|
@overload |
|
def __new__(cls, dtype: _CSingleCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[csingle]: ... |
|
@overload |
|
def __new__(cls, dtype: _CDoubleCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[cdouble]: ... |
|
@overload |
|
def __new__(cls, dtype: _CLongDoubleCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[clongdouble]: ... |
|
|
|
# Miscellaneous string-based representations and ctypes |
|
@overload |
|
def __new__(cls, dtype: _BoolCodes | type[ct.c_bool], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bool_]: ... |
|
@overload |
|
def __new__(cls, dtype: _TD64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[timedelta64]: ... |
|
@overload |
|
def __new__(cls, dtype: _DT64Codes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[datetime64]: ... |
|
@overload |
|
def __new__(cls, dtype: _StrCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[str_]: ... |
|
@overload |
|
def __new__(cls, dtype: _BytesCodes | type[ct.c_char], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bytes_]: ... |
|
@overload |
|
def __new__(cls, dtype: _VoidCodes, align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[void]: ... |
|
@overload |
|
def __new__(cls, dtype: _ObjectCodes | type[ct.py_object[Any]], align: bool = ..., copy: bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[object_]: ... |
|
|
|
# dtype of a dtype is the same dtype |
|
@overload |
|
def __new__( |
|
cls, |
|
dtype: dtype[_DTypeScalar_co], |
|
align: bool = ..., |
|
copy: bool = ..., |
|
metadata: dict[builtins.str, Any] = ..., |
|
) -> dtype[_DTypeScalar_co]: ... |
|
@overload |
|
def __new__( |
|
cls, |
|
dtype: _SupportsDType[dtype[_DTypeScalar_co]], |
|
align: bool = ..., |
|
copy: bool = ..., |
|
metadata: dict[builtins.str, Any] = ..., |
|
) -> dtype[_DTypeScalar_co]: ... |
|
# Handle strings that can't be expressed as literals |
|
@overload |
|
def __new__( |
|
cls, |
|
dtype: builtins.str, |
|
align: bool = ..., |
|
copy: bool = ..., |
|
metadata: dict[builtins.str, Any] = ..., |
|
) -> dtype[Any]: ... |
|
# Catchall overload for void-likes |
|
@overload |
|
def __new__( |
|
cls, |
|
dtype: _VoidDTypeLike, |
|
align: bool = ..., |
|
copy: bool = ..., |
|
metadata: dict[builtins.str, Any] = ..., |
|
) -> dtype[void]: ... |
|
# Catchall overload for object-likes |
|
@overload |
|
def __new__( |
|
cls, |
|
dtype: type[object], |
|
align: bool = ..., |
|
copy: bool = ..., |
|
metadata: dict[builtins.str, Any] = ..., |
|
) -> dtype[object_]: ... |
|
|
|
def __class_getitem__(self, item: Any) -> GenericAlias: ... |
|
|
|
@overload |
|
def __getitem__(self: dtype[void], key: list[builtins.str]) -> dtype[void]: ... |
|
@overload |
|
def __getitem__(self: dtype[void], key: builtins.str | SupportsIndex) -> dtype[Any]: ... |
|
|
|
# NOTE: In the future 1-based multiplications will also yield `flexible` dtypes |
|
@overload |
|
def __mul__(self: _DType, value: L[1]) -> _DType: ... |
|
@overload |
|
def __mul__(self: _FlexDType, value: SupportsIndex) -> _FlexDType: ... |
|
@overload |
|
def __mul__(self, value: SupportsIndex) -> dtype[void]: ... |
|
|
|
# NOTE: `__rmul__` seems to be broken when used in combination with |
|
# literals as of mypy 0.902. Set the return-type to `dtype[Any]` for |
|
# now for non-flexible dtypes. |
|
@overload |
|
def __rmul__(self: _FlexDType, value: SupportsIndex) -> _FlexDType: ... |
|
@overload |
|
def __rmul__(self, value: SupportsIndex) -> dtype[Any]: ... |
|
|
|
def __gt__(self, other: DTypeLike) -> bool: ... |
|
def __ge__(self, other: DTypeLike) -> bool: ... |
|
def __lt__(self, other: DTypeLike) -> bool: ... |
|
def __le__(self, other: DTypeLike) -> bool: ... |
|
|
|
# Explicitly defined `__eq__` and `__ne__` to get around mypy's |
|
# `strict_equality` option |
|
# identical to their `object`-based counterpart |
|
def __eq__(self, other: Any) -> bool: ... |
|
def __ne__(self, other: Any) -> bool: ... |
|
|
|
@property |
|
def alignment(self) -> int: ... |
|
@property |
|
def base(self) -> dtype[Any]: ... |
|
@property |
|
def byteorder(self) -> builtins.str: ... |
|
@property |
|
def char(self) -> builtins.str: ... |
|
@property |
|
def descr(self) -> list[tuple[builtins.str, builtins.str] | tuple[builtins.str, builtins.str, _Shape]]: ... |
|
@property |
|
def fields( |
|
self, |
|
) -> None | MappingProxyType[builtins.str, tuple[dtype[Any], int] | tuple[dtype[Any], int, Any]]: ... |
|
@property |
|
def flags(self) -> int: ... |
|
@property |
|
def hasobject(self) -> bool: ... |
|
@property |
|
def isbuiltin(self) -> int: ... |
|
@property |
|
def isnative(self) -> bool: ... |
|
@property |
|
def isalignedstruct(self) -> bool: ... |
|
@property |
|
def itemsize(self) -> int: ... |
|
@property |
|
def kind(self) -> builtins.str: ... |
|
@property |
|
def metadata(self) -> None | MappingProxyType[builtins.str, Any]: ... |
|
@property |
|
def name(self) -> builtins.str: ... |
|
@property |
|
def num(self) -> int: ... |
|
@property |
|
def shape(self) -> _Shape: ... |
|
@property |
|
def ndim(self) -> int: ... |
|
@property |
|
def subdtype(self) -> None | tuple[dtype[Any], _Shape]: ... |
|
def newbyteorder(self: _DType, __new_order: _ByteOrder = ...) -> _DType: ... |
|
@property |
|
def str(self) -> builtins.str: ... |
|
@property |
|
def type(self) -> type[_DTypeScalar_co]: ... |
|
|
|
_ArrayLikeInt = Union[ |
|
int, |
|
integer[Any], |
|
Sequence[Union[int, integer[Any]]], |
|
Sequence[Sequence[Any]], # TODO: wait for support for recursive types |
|
ndarray[Any, Any] |
|
] |
|
|
|
_FlatIterSelf = TypeVar("_FlatIterSelf", bound=flatiter[Any]) |
|
|
|
@final |
|
class flatiter(Generic[_NdArraySubClass]): |
|
__hash__: ClassVar[None] |
|
@property |
|
def base(self) -> _NdArraySubClass: ... |
|
@property |
|
def coords(self) -> _Shape: ... |
|
@property |
|
def index(self) -> int: ... |
|
def copy(self) -> _NdArraySubClass: ... |
|
def __iter__(self: _FlatIterSelf) -> _FlatIterSelf: ... |
|
def __next__(self: flatiter[ndarray[Any, dtype[_ScalarType]]]) -> _ScalarType: ... |
|
def __len__(self) -> int: ... |
|
@overload |
|
def __getitem__( |
|
self: flatiter[ndarray[Any, dtype[_ScalarType]]], |
|
key: int | integer[Any] | tuple[int | integer[Any]], |
|
) -> _ScalarType: ... |
|
@overload |
|
def __getitem__( |
|
self, |
|
key: _ArrayLikeInt | slice | ellipsis | tuple[_ArrayLikeInt | slice | ellipsis], |
|
) -> _NdArraySubClass: ... |
|
# TODO: `__setitem__` operates via `unsafe` casting rules, and can |
|
# thus accept any type accepted by the relevant underlying `np.generic` |
|
# constructor. |
|
# This means that `value` must in reality be a supertype of `npt.ArrayLike`. |
|
def __setitem__( |
|
self, |
|
key: _ArrayLikeInt | slice | ellipsis | tuple[_ArrayLikeInt | slice | ellipsis], |
|
value: Any, |
|
) -> None: ... |
|
@overload |
|
def __array__(self: flatiter[ndarray[Any, _DType]], dtype: None = ..., /) -> ndarray[Any, _DType]: ... |
|
@overload |
|
def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ... |
|
|
|
_OrderKACF = L[None, "K", "A", "C", "F"] |
|
_OrderACF = L[None, "A", "C", "F"] |
|
_OrderCF = L[None, "C", "F"] |
|
|
|
_ModeKind = L["raise", "wrap", "clip"] |
|
_PartitionKind = L["introselect"] |
|
_SortKind = L["quicksort", "mergesort", "heapsort", "stable"] |
|
_SortSide = L["left", "right"] |
|
|
|
_ArraySelf = TypeVar("_ArraySelf", bound=_ArrayOrScalarCommon) |
|
|
|
class _ArrayOrScalarCommon: |
|
@property |
|
def T(self: _ArraySelf) -> _ArraySelf: ... |
|
@property |
|
def data(self) -> memoryview: ... |
|
@property |
|
def flags(self) -> flagsobj: ... |
|
@property |
|
def itemsize(self) -> int: ... |
|
@property |
|
def nbytes(self) -> int: ... |
|
def __bool__(self) -> bool: ... |
|
def __bytes__(self) -> bytes: ... |
|
def __str__(self) -> str: ... |
|
def __repr__(self) -> str: ... |
|
def __copy__(self: _ArraySelf) -> _ArraySelf: ... |
|
def __deepcopy__(self: _ArraySelf, memo: None | dict[int, Any], /) -> _ArraySelf: ... |
|
|
|
# TODO: How to deal with the non-commutative nature of `==` and `!=`? |
|
# xref numpy/numpy#17368 |
|
def __eq__(self, other: Any) -> Any: ... |
|
def __ne__(self, other: Any) -> Any: ... |
|
def copy(self: _ArraySelf, order: _OrderKACF = ...) -> _ArraySelf: ... |
|
def dump(self, file: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _SupportsWrite[bytes]) -> None: ... |
|
def dumps(self) -> bytes: ... |
|
def tobytes(self, order: _OrderKACF = ...) -> bytes: ... |
|
# NOTE: `tostring()` is deprecated and therefore excluded |
|
# def tostring(self, order=...): ... |
|
def tofile( |
|
self, |
|
fid: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _IOProtocol, |
|
sep: str = ..., |
|
format: str = ..., |
|
) -> None: ... |
|
# generics and 0d arrays return builtin scalars |
|
def tolist(self) -> Any: ... |
|
|
|
@property |
|
def __array_interface__(self) -> dict[str, Any]: ... |
|
@property |
|
def __array_priority__(self) -> float: ... |
|
@property |
|
def __array_struct__(self) -> Any: ... # builtins.PyCapsule |
|
def __setstate__(self, state: tuple[ |
|
SupportsIndex, # version |
|
_ShapeLike, # Shape |
|
_DType_co, # DType |
|
bool, # F-continuous |
|
bytes | list[Any], # Data |
|
], /) -> None: ... |
|
# a `bool_` is returned when `keepdims=True` and `self` is a 0d array |
|
|
|
@overload |
|
def all( |
|
self, |
|
axis: None = ..., |
|
out: None = ..., |
|
keepdims: L[False] = ..., |
|
*, |
|
where: _ArrayLikeBool_co = ..., |
|
) -> bool_: ... |
|
@overload |
|
def all( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
out: None = ..., |
|
keepdims: bool = ..., |
|
*, |
|
where: _ArrayLikeBool_co = ..., |
|
) -> Any: ... |
|
@overload |
|
def all( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
keepdims: bool = ..., |
|
*, |
|
where: _ArrayLikeBool_co = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def any( |
|
self, |
|
axis: None = ..., |
|
out: None = ..., |
|
keepdims: L[False] = ..., |
|
*, |
|
where: _ArrayLikeBool_co = ..., |
|
) -> bool_: ... |
|
@overload |
|
def any( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
out: None = ..., |
|
keepdims: bool = ..., |
|
*, |
|
where: _ArrayLikeBool_co = ..., |
|
) -> Any: ... |
|
@overload |
|
def any( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
keepdims: bool = ..., |
|
*, |
|
where: _ArrayLikeBool_co = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def argmax( |
|
self, |
|
axis: None = ..., |
|
out: None = ..., |
|
*, |
|
keepdims: L[False] = ..., |
|
) -> intp: ... |
|
@overload |
|
def argmax( |
|
self, |
|
axis: SupportsIndex = ..., |
|
out: None = ..., |
|
*, |
|
keepdims: bool = ..., |
|
) -> Any: ... |
|
@overload |
|
def argmax( |
|
self, |
|
axis: None | SupportsIndex = ..., |
|
out: _NdArraySubClass = ..., |
|
*, |
|
keepdims: bool = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def argmin( |
|
self, |
|
axis: None = ..., |
|
out: None = ..., |
|
*, |
|
keepdims: L[False] = ..., |
|
) -> intp: ... |
|
@overload |
|
def argmin( |
|
self, |
|
axis: SupportsIndex = ..., |
|
out: None = ..., |
|
*, |
|
keepdims: bool = ..., |
|
) -> Any: ... |
|
@overload |
|
def argmin( |
|
self, |
|
axis: None | SupportsIndex = ..., |
|
out: _NdArraySubClass = ..., |
|
*, |
|
keepdims: bool = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
def argsort( |
|
self, |
|
axis: None | SupportsIndex = ..., |
|
kind: None | _SortKind = ..., |
|
order: None | str | Sequence[str] = ..., |
|
) -> ndarray[Any, Any]: ... |
|
|
|
@overload |
|
def choose( |
|
self, |
|
choices: ArrayLike, |
|
out: None = ..., |
|
mode: _ModeKind = ..., |
|
) -> ndarray[Any, Any]: ... |
|
@overload |
|
def choose( |
|
self, |
|
choices: ArrayLike, |
|
out: _NdArraySubClass = ..., |
|
mode: _ModeKind = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def clip( |
|
self, |
|
min: ArrayLike = ..., |
|
max: None | ArrayLike = ..., |
|
out: None = ..., |
|
**kwargs: Any, |
|
) -> ndarray[Any, Any]: ... |
|
@overload |
|
def clip( |
|
self, |
|
min: None = ..., |
|
max: ArrayLike = ..., |
|
out: None = ..., |
|
**kwargs: Any, |
|
) -> ndarray[Any, Any]: ... |
|
@overload |
|
def clip( |
|
self, |
|
min: ArrayLike = ..., |
|
max: None | ArrayLike = ..., |
|
out: _NdArraySubClass = ..., |
|
**kwargs: Any, |
|
) -> _NdArraySubClass: ... |
|
@overload |
|
def clip( |
|
self, |
|
min: None = ..., |
|
max: ArrayLike = ..., |
|
out: _NdArraySubClass = ..., |
|
**kwargs: Any, |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def compress( |
|
self, |
|
a: ArrayLike, |
|
axis: None | SupportsIndex = ..., |
|
out: None = ..., |
|
) -> ndarray[Any, Any]: ... |
|
@overload |
|
def compress( |
|
self, |
|
a: ArrayLike, |
|
axis: None | SupportsIndex = ..., |
|
out: _NdArraySubClass = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
def conj(self: _ArraySelf) -> _ArraySelf: ... |
|
|
|
def conjugate(self: _ArraySelf) -> _ArraySelf: ... |
|
|
|
@overload |
|
def cumprod( |
|
self, |
|
axis: None | SupportsIndex = ..., |
|
dtype: DTypeLike = ..., |
|
out: None = ..., |
|
) -> ndarray[Any, Any]: ... |
|
@overload |
|
def cumprod( |
|
self, |
|
axis: None | SupportsIndex = ..., |
|
dtype: DTypeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def cumsum( |
|
self, |
|
axis: None | SupportsIndex = ..., |
|
dtype: DTypeLike = ..., |
|
out: None = ..., |
|
) -> ndarray[Any, Any]: ... |
|
@overload |
|
def cumsum( |
|
self, |
|
axis: None | SupportsIndex = ..., |
|
dtype: DTypeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def max( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
out: None = ..., |
|
keepdims: bool = ..., |
|
initial: _NumberLike_co = ..., |
|
where: _ArrayLikeBool_co = ..., |
|
) -> Any: ... |
|
@overload |
|
def max( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
keepdims: bool = ..., |
|
initial: _NumberLike_co = ..., |
|
where: _ArrayLikeBool_co = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def mean( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
dtype: DTypeLike = ..., |
|
out: None = ..., |
|
keepdims: bool = ..., |
|
*, |
|
where: _ArrayLikeBool_co = ..., |
|
) -> Any: ... |
|
@overload |
|
def mean( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
dtype: DTypeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
keepdims: bool = ..., |
|
*, |
|
where: _ArrayLikeBool_co = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def min( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
out: None = ..., |
|
keepdims: bool = ..., |
|
initial: _NumberLike_co = ..., |
|
where: _ArrayLikeBool_co = ..., |
|
) -> Any: ... |
|
@overload |
|
def min( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
keepdims: bool = ..., |
|
initial: _NumberLike_co = ..., |
|
where: _ArrayLikeBool_co = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
def newbyteorder( |
|
self: _ArraySelf, |
|
__new_order: _ByteOrder = ..., |
|
) -> _ArraySelf: ... |
|
|
|
@overload |
|
def prod( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
dtype: DTypeLike = ..., |
|
out: None = ..., |
|
keepdims: bool = ..., |
|
initial: _NumberLike_co = ..., |
|
where: _ArrayLikeBool_co = ..., |
|
) -> Any: ... |
|
@overload |
|
def prod( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
dtype: DTypeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
keepdims: bool = ..., |
|
initial: _NumberLike_co = ..., |
|
where: _ArrayLikeBool_co = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def ptp( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
out: None = ..., |
|
keepdims: bool = ..., |
|
) -> Any: ... |
|
@overload |
|
def ptp( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
keepdims: bool = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def round( |
|
self: _ArraySelf, |
|
decimals: SupportsIndex = ..., |
|
out: None = ..., |
|
) -> _ArraySelf: ... |
|
@overload |
|
def round( |
|
self, |
|
decimals: SupportsIndex = ..., |
|
out: _NdArraySubClass = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def std( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
dtype: DTypeLike = ..., |
|
out: None = ..., |
|
ddof: float = ..., |
|
keepdims: bool = ..., |
|
*, |
|
where: _ArrayLikeBool_co = ..., |
|
) -> Any: ... |
|
@overload |
|
def std( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
dtype: DTypeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
ddof: float = ..., |
|
keepdims: bool = ..., |
|
*, |
|
where: _ArrayLikeBool_co = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def sum( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
dtype: DTypeLike = ..., |
|
out: None = ..., |
|
keepdims: bool = ..., |
|
initial: _NumberLike_co = ..., |
|
where: _ArrayLikeBool_co = ..., |
|
) -> Any: ... |
|
@overload |
|
def sum( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
dtype: DTypeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
keepdims: bool = ..., |
|
initial: _NumberLike_co = ..., |
|
where: _ArrayLikeBool_co = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def var( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
dtype: DTypeLike = ..., |
|
out: None = ..., |
|
ddof: float = ..., |
|
keepdims: bool = ..., |
|
*, |
|
where: _ArrayLikeBool_co = ..., |
|
) -> Any: ... |
|
@overload |
|
def var( |
|
self, |
|
axis: None | _ShapeLike = ..., |
|
dtype: DTypeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
ddof: float = ..., |
|
keepdims: bool = ..., |
|
*, |
|
where: _ArrayLikeBool_co = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
_DType = TypeVar("_DType", bound=dtype[Any]) |
|
_DType_co = TypeVar("_DType_co", covariant=True, bound=dtype[Any]) |
|
_FlexDType = TypeVar("_FlexDType", bound=dtype[flexible]) |
|
|
|
# TODO: Set the `bound` to something more suitable once we |
|
# have proper shape support |
|
_ShapeType = TypeVar("_ShapeType", bound=Any) |
|
_ShapeType2 = TypeVar("_ShapeType2", bound=Any) |
|
_NumberType = TypeVar("_NumberType", bound=number[Any]) |
|
|
|
if sys.version_info >= (3, 12): |
|
from collections.abc import Buffer as _SupportsBuffer |
|
else: |
|
_SupportsBuffer = ( |
|
bytes |
|
| bytearray |
|
| memoryview |
|
| _array.array[Any] |
|
| mmap.mmap |
|
| NDArray[Any] |
|
| generic |
|
) |
|
|
|
_T = TypeVar("_T") |
|
_T_co = TypeVar("_T_co", covariant=True) |
|
_T_contra = TypeVar("_T_contra", contravariant=True) |
|
_2Tuple = tuple[_T, _T] |
|
_CastingKind = L["no", "equiv", "safe", "same_kind", "unsafe"] |
|
|
|
_ArrayUInt_co = NDArray[Union[bool_, unsignedinteger[Any]]] |
|
_ArrayInt_co = NDArray[Union[bool_, integer[Any]]] |
|
_ArrayFloat_co = NDArray[Union[bool_, integer[Any], floating[Any]]] |
|
_ArrayComplex_co = NDArray[Union[bool_, integer[Any], floating[Any], complexfloating[Any, Any]]] |
|
_ArrayNumber_co = NDArray[Union[bool_, number[Any]]] |
|
_ArrayTD64_co = NDArray[Union[bool_, integer[Any], timedelta64]] |
|
|
|
# Introduce an alias for `dtype` to avoid naming conflicts. |
|
_dtype = dtype |
|
|
|
# `builtins.PyCapsule` unfortunately lacks annotations as of the moment |
|
# use `Any` as a stopgap measure |
|
_PyCapsule = Any |
|
|
|
class _SupportsItem(Protocol[_T_co]): |
|
def item(self, args: Any, /) -> _T_co: ... |
|
|
|
class _SupportsReal(Protocol[_T_co]): |
|
@property |
|
def real(self) -> _T_co: ... |
|
|
|
class _SupportsImag(Protocol[_T_co]): |
|
@property |
|
def imag(self) -> _T_co: ... |
|
|
|
class ndarray(_ArrayOrScalarCommon, Generic[_ShapeType, _DType_co]): |
|
__hash__: ClassVar[None] |
|
@property |
|
def base(self) -> None | ndarray[Any, Any]: ... |
|
@property |
|
def ndim(self) -> int: ... |
|
@property |
|
def size(self) -> int: ... |
|
@property |
|
def real( |
|
self: ndarray[_ShapeType, dtype[_SupportsReal[_ScalarType]]], # type: ignore[type-var] |
|
) -> ndarray[_ShapeType, _dtype[_ScalarType]]: ... |
|
@real.setter |
|
def real(self, value: ArrayLike) -> None: ... |
|
@property |
|
def imag( |
|
self: ndarray[_ShapeType, dtype[_SupportsImag[_ScalarType]]], # type: ignore[type-var] |
|
) -> ndarray[_ShapeType, _dtype[_ScalarType]]: ... |
|
@imag.setter |
|
def imag(self, value: ArrayLike) -> None: ... |
|
def __new__( |
|
cls: type[_ArraySelf], |
|
shape: _ShapeLike, |
|
dtype: DTypeLike = ..., |
|
buffer: None | _SupportsBuffer = ..., |
|
offset: SupportsIndex = ..., |
|
strides: None | _ShapeLike = ..., |
|
order: _OrderKACF = ..., |
|
) -> _ArraySelf: ... |
|
|
|
if sys.version_info >= (3, 12): |
|
def __buffer__(self, flags: int, /) -> memoryview: ... |
|
|
|
def __class_getitem__(self, item: Any) -> GenericAlias: ... |
|
|
|
@overload |
|
def __array__(self, dtype: None = ..., /) -> ndarray[Any, _DType_co]: ... |
|
@overload |
|
def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ... |
|
|
|
def __array_ufunc__( |
|
self, |
|
ufunc: ufunc, |
|
method: L["__call__", "reduce", "reduceat", "accumulate", "outer", "inner"], |
|
*inputs: Any, |
|
**kwargs: Any, |
|
) -> Any: ... |
|
|
|
def __array_function__( |
|
self, |
|
func: Callable[..., Any], |
|
types: Iterable[type], |
|
args: Iterable[Any], |
|
kwargs: Mapping[str, Any], |
|
) -> Any: ... |
|
|
|
# NOTE: In practice any object is accepted by `obj`, but as `__array_finalize__` |
|
# is a pseudo-abstract method the type has been narrowed down in order to |
|
# grant subclasses a bit more flexibility |
|
def __array_finalize__(self, obj: None | NDArray[Any], /) -> None: ... |
|
|
|
def __array_wrap__( |
|
self, |
|
array: ndarray[_ShapeType2, _DType], |
|
context: None | tuple[ufunc, tuple[Any, ...], int] = ..., |
|
/, |
|
) -> ndarray[_ShapeType2, _DType]: ... |
|
|
|
def __array_prepare__( |
|
self, |
|
array: ndarray[_ShapeType2, _DType], |
|
context: None | tuple[ufunc, tuple[Any, ...], int] = ..., |
|
/, |
|
) -> ndarray[_ShapeType2, _DType]: ... |
|
|
|
@overload |
|
def __getitem__(self, key: ( |
|
NDArray[integer[Any]] |
|
| NDArray[bool_] |
|
| tuple[NDArray[integer[Any]] | NDArray[bool_], ...] |
|
)) -> ndarray[Any, _DType_co]: ... |
|
@overload |
|
def __getitem__(self, key: SupportsIndex | tuple[SupportsIndex, ...]) -> Any: ... |
|
@overload |
|
def __getitem__(self, key: ( |
|
None |
|
| slice |
|
| ellipsis |
|
| SupportsIndex |
|
| _ArrayLikeInt_co |
|
| tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...] |
|
)) -> ndarray[Any, _DType_co]: ... |
|
@overload |
|
def __getitem__(self: NDArray[void], key: str) -> NDArray[Any]: ... |
|
@overload |
|
def __getitem__(self: NDArray[void], key: list[str]) -> ndarray[_ShapeType, _dtype[void]]: ... |
|
|
|
@property |
|
def ctypes(self) -> _ctypes[int]: ... |
|
@property |
|
def shape(self) -> _Shape: ... |
|
@shape.setter |
|
def shape(self, value: _ShapeLike) -> None: ... |
|
@property |
|
def strides(self) -> _Shape: ... |
|
@strides.setter |
|
def strides(self, value: _ShapeLike) -> None: ... |
|
def byteswap(self: _ArraySelf, inplace: bool = ...) -> _ArraySelf: ... |
|
def fill(self, value: Any) -> None: ... |
|
@property |
|
def flat(self: _NdArraySubClass) -> flatiter[_NdArraySubClass]: ... |
|
|
|
# Use the same output type as that of the underlying `generic` |
|
@overload |
|
def item( |
|
self: ndarray[Any, _dtype[_SupportsItem[_T]]], # type: ignore[type-var] |
|
*args: SupportsIndex, |
|
) -> _T: ... |
|
@overload |
|
def item( |
|
self: ndarray[Any, _dtype[_SupportsItem[_T]]], # type: ignore[type-var] |
|
args: tuple[SupportsIndex, ...], |
|
/, |
|
) -> _T: ... |
|
|
|
@overload |
|
def itemset(self, value: Any, /) -> None: ... |
|
@overload |
|
def itemset(self, item: _ShapeLike, value: Any, /) -> None: ... |
|
|
|
@overload |
|
def resize(self, new_shape: _ShapeLike, /, *, refcheck: bool = ...) -> None: ... |
|
@overload |
|
def resize(self, *new_shape: SupportsIndex, refcheck: bool = ...) -> None: ... |
|
|
|
def setflags( |
|
self, write: bool = ..., align: bool = ..., uic: bool = ... |
|
) -> None: ... |
|
|
|
def squeeze( |
|
self, |
|
axis: None | SupportsIndex | tuple[SupportsIndex, ...] = ..., |
|
) -> ndarray[Any, _DType_co]: ... |
|
|
|
def swapaxes( |
|
self, |
|
axis1: SupportsIndex, |
|
axis2: SupportsIndex, |
|
) -> ndarray[Any, _DType_co]: ... |
|
|
|
@overload |
|
def transpose(self: _ArraySelf, axes: None | _ShapeLike, /) -> _ArraySelf: ... |
|
@overload |
|
def transpose(self: _ArraySelf, *axes: SupportsIndex) -> _ArraySelf: ... |
|
|
|
def argpartition( |
|
self, |
|
kth: _ArrayLikeInt_co, |
|
axis: None | SupportsIndex = ..., |
|
kind: _PartitionKind = ..., |
|
order: None | str | Sequence[str] = ..., |
|
) -> ndarray[Any, _dtype[intp]]: ... |
|
|
|
def diagonal( |
|
self, |
|
offset: SupportsIndex = ..., |
|
axis1: SupportsIndex = ..., |
|
axis2: SupportsIndex = ..., |
|
) -> ndarray[Any, _DType_co]: ... |
|
|
|
# 1D + 1D returns a scalar |
|
# all other with at least 1 non-0D array return an ndarray. |
|
@overload |
|
def dot(self, b: _ScalarLike_co, out: None = ...) -> ndarray[Any, Any]: ... |
|
@overload |
|
def dot(self, b: ArrayLike, out: None = ...) -> Any: ... # type: ignore[misc] |
|
@overload |
|
def dot(self, b: ArrayLike, out: _NdArraySubClass) -> _NdArraySubClass: ... |
|
|
|
# `nonzero()` is deprecated for 0d arrays/generics |
|
def nonzero(self) -> tuple[ndarray[Any, _dtype[intp]], ...]: ... |
|
|
|
def partition( |
|
self, |
|
kth: _ArrayLikeInt_co, |
|
axis: SupportsIndex = ..., |
|
kind: _PartitionKind = ..., |
|
order: None | str | Sequence[str] = ..., |
|
) -> None: ... |
|
|
|
# `put` is technically available to `generic`, |
|
# but is pointless as `generic`s are immutable |
|
def put( |
|
self, |
|
ind: _ArrayLikeInt_co, |
|
v: ArrayLike, |
|
mode: _ModeKind = ..., |
|
) -> None: ... |
|
|
|
@overload |
|
def searchsorted( # type: ignore[misc] |
|
self, # >= 1D array |
|
v: _ScalarLike_co, # 0D array-like |
|
side: _SortSide = ..., |
|
sorter: None | _ArrayLikeInt_co = ..., |
|
) -> intp: ... |
|
@overload |
|
def searchsorted( |
|
self, # >= 1D array |
|
v: ArrayLike, |
|
side: _SortSide = ..., |
|
sorter: None | _ArrayLikeInt_co = ..., |
|
) -> ndarray[Any, _dtype[intp]]: ... |
|
|
|
def setfield( |
|
self, |
|
val: ArrayLike, |
|
dtype: DTypeLike, |
|
offset: SupportsIndex = ..., |
|
) -> None: ... |
|
|
|
def sort( |
|
self, |
|
axis: SupportsIndex = ..., |
|
kind: None | _SortKind = ..., |
|
order: None | str | Sequence[str] = ..., |
|
) -> None: ... |
|
|
|
@overload |
|
def trace( |
|
self, # >= 2D array |
|
offset: SupportsIndex = ..., |
|
axis1: SupportsIndex = ..., |
|
axis2: SupportsIndex = ..., |
|
dtype: DTypeLike = ..., |
|
out: None = ..., |
|
) -> Any: ... |
|
@overload |
|
def trace( |
|
self, # >= 2D array |
|
offset: SupportsIndex = ..., |
|
axis1: SupportsIndex = ..., |
|
axis2: SupportsIndex = ..., |
|
dtype: DTypeLike = ..., |
|
out: _NdArraySubClass = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def take( # type: ignore[misc] |
|
self: ndarray[Any, _dtype[_ScalarType]], |
|
indices: _IntLike_co, |
|
axis: None | SupportsIndex = ..., |
|
out: None = ..., |
|
mode: _ModeKind = ..., |
|
) -> _ScalarType: ... |
|
@overload |
|
def take( # type: ignore[misc] |
|
self, |
|
indices: _ArrayLikeInt_co, |
|
axis: None | SupportsIndex = ..., |
|
out: None = ..., |
|
mode: _ModeKind = ..., |
|
) -> ndarray[Any, _DType_co]: ... |
|
@overload |
|
def take( |
|
self, |
|
indices: _ArrayLikeInt_co, |
|
axis: None | SupportsIndex = ..., |
|
out: _NdArraySubClass = ..., |
|
mode: _ModeKind = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
def repeat( |
|
self, |
|
repeats: _ArrayLikeInt_co, |
|
axis: None | SupportsIndex = ..., |
|
) -> ndarray[Any, _DType_co]: ... |
|
|
|
def flatten( |
|
self, |
|
order: _OrderKACF = ..., |
|
) -> ndarray[Any, _DType_co]: ... |
|
|
|
def ravel( |
|
self, |
|
order: _OrderKACF = ..., |
|
) -> ndarray[Any, _DType_co]: ... |
|
|
|
@overload |
|
def reshape( |
|
self, shape: _ShapeLike, /, *, order: _OrderACF = ... |
|
) -> ndarray[Any, _DType_co]: ... |
|
@overload |
|
def reshape( |
|
self, *shape: SupportsIndex, order: _OrderACF = ... |
|
) -> ndarray[Any, _DType_co]: ... |
|
|
|
@overload |
|
def astype( |
|
self, |
|
dtype: _DTypeLike[_ScalarType], |
|
order: _OrderKACF = ..., |
|
casting: _CastingKind = ..., |
|
subok: bool = ..., |
|
copy: bool | _CopyMode = ..., |
|
) -> NDArray[_ScalarType]: ... |
|
@overload |
|
def astype( |
|
self, |
|
dtype: DTypeLike, |
|
order: _OrderKACF = ..., |
|
casting: _CastingKind = ..., |
|
subok: bool = ..., |
|
copy: bool | _CopyMode = ..., |
|
) -> NDArray[Any]: ... |
|
|
|
@overload |
|
def view(self: _ArraySelf) -> _ArraySelf: ... |
|
@overload |
|
def view(self, type: type[_NdArraySubClass]) -> _NdArraySubClass: ... |
|
@overload |
|
def view(self, dtype: _DTypeLike[_ScalarType]) -> NDArray[_ScalarType]: ... |
|
@overload |
|
def view(self, dtype: DTypeLike) -> NDArray[Any]: ... |
|
@overload |
|
def view( |
|
self, |
|
dtype: DTypeLike, |
|
type: type[_NdArraySubClass], |
|
) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def getfield( |
|
self, |
|
dtype: _DTypeLike[_ScalarType], |
|
offset: SupportsIndex = ... |
|
) -> NDArray[_ScalarType]: ... |
|
@overload |
|
def getfield( |
|
self, |
|
dtype: DTypeLike, |
|
offset: SupportsIndex = ... |
|
) -> NDArray[Any]: ... |
|
|
|
# Dispatch to the underlying `generic` via protocols |
|
def __int__( |
|
self: ndarray[Any, _dtype[SupportsInt]], # type: ignore[type-var] |
|
) -> int: ... |
|
|
|
def __float__( |
|
self: ndarray[Any, _dtype[SupportsFloat]], # type: ignore[type-var] |
|
) -> float: ... |
|
|
|
def __complex__( |
|
self: ndarray[Any, _dtype[SupportsComplex]], # type: ignore[type-var] |
|
) -> complex: ... |
|
|
|
def __index__( |
|
self: ndarray[Any, _dtype[SupportsIndex]], # type: ignore[type-var] |
|
) -> int: ... |
|
|
|
def __len__(self) -> int: ... |
|
def __setitem__(self, key, value): ... |
|
def __iter__(self) -> Any: ... |
|
def __contains__(self, key) -> bool: ... |
|
|
|
# The last overload is for catching recursive objects whose |
|
# nesting is too deep. |
|
# The first overload is for catching `bytes` (as they are a subtype of |
|
# `Sequence[int]`) and `str`. As `str` is a recursive sequence of |
|
# strings, it will pass through the final overload otherwise |
|
|
|
@overload |
|
def __lt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __lt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __lt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __lt__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ... |
|
@overload |
|
def __lt__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ... |
|
|
|
@overload |
|
def __le__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __le__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __le__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __le__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ... |
|
@overload |
|
def __le__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ... |
|
|
|
@overload |
|
def __gt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __gt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __gt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __gt__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ... |
|
@overload |
|
def __gt__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ... |
|
|
|
@overload |
|
def __ge__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __ge__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __ge__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __ge__(self: NDArray[object_], other: Any) -> NDArray[bool_]: ... |
|
@overload |
|
def __ge__(self: NDArray[Any], other: _ArrayLikeObject_co) -> NDArray[bool_]: ... |
|
|
|
# Unary ops |
|
@overload |
|
def __abs__(self: NDArray[bool_]) -> NDArray[bool_]: ... |
|
@overload |
|
def __abs__(self: NDArray[complexfloating[_NBit1, _NBit1]]) -> NDArray[floating[_NBit1]]: ... |
|
@overload |
|
def __abs__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ... |
|
@overload |
|
def __abs__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __abs__(self: NDArray[object_]) -> Any: ... |
|
|
|
@overload |
|
def __invert__(self: NDArray[bool_]) -> NDArray[bool_]: ... |
|
@overload |
|
def __invert__(self: NDArray[_IntType]) -> NDArray[_IntType]: ... |
|
@overload |
|
def __invert__(self: NDArray[object_]) -> Any: ... |
|
|
|
@overload |
|
def __pos__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ... |
|
@overload |
|
def __pos__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __pos__(self: NDArray[object_]) -> Any: ... |
|
|
|
@overload |
|
def __neg__(self: NDArray[_NumberType]) -> NDArray[_NumberType]: ... |
|
@overload |
|
def __neg__(self: NDArray[timedelta64]) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __neg__(self: NDArray[object_]) -> Any: ... |
|
|
|
# Binary ops |
|
@overload |
|
def __matmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] |
|
@overload |
|
def __matmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __matmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __matmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __matmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... |
|
@overload |
|
def __matmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... |
|
@overload |
|
def __matmul__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __matmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __rmatmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] |
|
@overload |
|
def __rmatmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rmatmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rmatmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rmatmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... |
|
@overload |
|
def __rmatmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... |
|
@overload |
|
def __rmatmul__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __rmatmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __mod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] |
|
@overload |
|
def __mod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __mod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __mod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __mod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __mod__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __mod__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __rmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] |
|
@overload |
|
def __rmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __rmod__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __rmod__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __divmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc] |
|
@overload |
|
def __divmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[NDArray[unsignedinteger[Any]]]: ... # type: ignore[misc] |
|
@overload |
|
def __divmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[NDArray[signedinteger[Any]]]: ... # type: ignore[misc] |
|
@overload |
|
def __divmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc] |
|
@overload |
|
def __divmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> tuple[NDArray[int64], NDArray[timedelta64]]: ... |
|
|
|
@overload |
|
def __rdivmod__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc] |
|
@overload |
|
def __rdivmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> _2Tuple[NDArray[unsignedinteger[Any]]]: ... # type: ignore[misc] |
|
@overload |
|
def __rdivmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> _2Tuple[NDArray[signedinteger[Any]]]: ... # type: ignore[misc] |
|
@overload |
|
def __rdivmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc] |
|
@overload |
|
def __rdivmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> tuple[NDArray[int64], NDArray[timedelta64]]: ... |
|
|
|
@overload |
|
def __add__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] |
|
@overload |
|
def __add__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __add__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __add__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __add__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __add__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... |
|
@overload |
|
def __add__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc] |
|
@overload |
|
def __add__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ... |
|
@overload |
|
def __add__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ... |
|
@overload |
|
def __add__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __add__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __radd__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] |
|
@overload |
|
def __radd__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __radd__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __radd__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __radd__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __radd__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... |
|
@overload |
|
def __radd__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc] |
|
@overload |
|
def __radd__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ... |
|
@overload |
|
def __radd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ... |
|
@overload |
|
def __radd__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __radd__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __sub__(self: NDArray[_UnknownType], other: _ArrayLikeUnknown) -> NDArray[Any]: ... |
|
@overload |
|
def __sub__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NoReturn: ... |
|
@overload |
|
def __sub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __sub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __sub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __sub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __sub__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... |
|
@overload |
|
def __sub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc] |
|
@overload |
|
def __sub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ... |
|
@overload |
|
def __sub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __sub__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __sub__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __rsub__(self: NDArray[_UnknownType], other: _ArrayLikeUnknown) -> NDArray[Any]: ... |
|
@overload |
|
def __rsub__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NoReturn: ... |
|
@overload |
|
def __rsub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rsub__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rsub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rsub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rsub__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... |
|
@overload |
|
def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... # type: ignore[misc] |
|
@overload |
|
def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co) -> NDArray[datetime64]: ... # type: ignore[misc] |
|
@overload |
|
def __rsub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __rsub__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __rsub__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __mul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] |
|
@overload |
|
def __mul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __mul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __mul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __mul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __mul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... |
|
@overload |
|
def __mul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __mul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __mul__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __mul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __rmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] |
|
@overload |
|
def __rmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... |
|
@overload |
|
def __rmul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __rmul__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __rmul__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __floordiv__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] |
|
@overload |
|
def __floordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __floordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __floordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __floordiv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[int64]: ... |
|
@overload |
|
def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ... |
|
@overload |
|
def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __floordiv__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __floordiv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __rfloordiv__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] |
|
@overload |
|
def __rfloordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rfloordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rfloordiv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[int64]: ... |
|
@overload |
|
def __rfloordiv__(self: NDArray[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ... |
|
@overload |
|
def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __rfloordiv__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __rfloordiv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __pow__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] |
|
@overload |
|
def __pow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __pow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __pow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __pow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... |
|
@overload |
|
def __pow__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... |
|
@overload |
|
def __pow__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __pow__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __rpow__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] |
|
@overload |
|
def __rpow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rpow__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rpow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rpow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... |
|
@overload |
|
def __rpow__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... |
|
@overload |
|
def __rpow__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __rpow__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __truediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> NDArray[float64]: ... # type: ignore[misc] |
|
@overload |
|
def __truediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __truediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __truediv__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... |
|
@overload |
|
def __truediv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[float64]: ... |
|
@overload |
|
def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ... |
|
@overload |
|
def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __truediv__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __truediv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __rtruediv__(self: _ArrayInt_co, other: _ArrayInt_co) -> NDArray[float64]: ... # type: ignore[misc] |
|
@overload |
|
def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rtruediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rtruediv__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co) -> NDArray[number[Any]]: ... |
|
@overload |
|
def __rtruediv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[float64]: ... |
|
@overload |
|
def __rtruediv__(self: NDArray[bool_], other: _ArrayLikeTD64_co) -> NoReturn: ... |
|
@overload |
|
def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __rtruediv__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __rtruediv__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __lshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] |
|
@overload |
|
def __lshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __lshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... |
|
@overload |
|
def __lshift__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __lshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __rlshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] |
|
@overload |
|
def __rlshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rlshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... |
|
@overload |
|
def __rlshift__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __rlshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __rshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] |
|
@overload |
|
def __rshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... |
|
@overload |
|
def __rshift__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __rshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __rrshift__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[int8]: ... # type: ignore[misc] |
|
@overload |
|
def __rrshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rrshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... |
|
@overload |
|
def __rrshift__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __rrshift__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __and__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] |
|
@overload |
|
def __and__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __and__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... |
|
@overload |
|
def __and__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __and__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __rand__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] |
|
@overload |
|
def __rand__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rand__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... |
|
@overload |
|
def __rand__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __rand__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __xor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] |
|
@overload |
|
def __xor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __xor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... |
|
@overload |
|
def __xor__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __xor__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __rxor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] |
|
@overload |
|
def __rxor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __rxor__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... |
|
@overload |
|
def __rxor__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __rxor__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __or__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] |
|
@overload |
|
def __or__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __or__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... |
|
@overload |
|
def __or__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __or__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
@overload |
|
def __ror__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... # type: ignore[misc] |
|
@overload |
|
def __ror__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc] |
|
@overload |
|
def __ror__(self: _ArrayInt_co, other: _ArrayLikeInt_co) -> NDArray[signedinteger[Any]]: ... |
|
@overload |
|
def __ror__(self: NDArray[object_], other: Any) -> Any: ... |
|
@overload |
|
def __ror__(self: NDArray[Any], other: _ArrayLikeObject_co) -> Any: ... |
|
|
|
# `np.generic` does not support inplace operations |
|
|
|
# NOTE: Inplace ops generally use "same_kind" casting w.r.t. to the left |
|
# operand. An exception to this rule are unsigned integers though, which |
|
# also accepts a signed integer for the right operand as long it is a 0D |
|
# object and its value is >= 0 |
|
@overload |
|
def __iadd__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __iadd__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... |
|
@overload |
|
def __iadd__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... |
|
@overload |
|
def __iadd__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... |
|
@overload |
|
def __iadd__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... |
|
@overload |
|
def __iadd__(self: NDArray[timedelta64], other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __iadd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ... |
|
@overload |
|
def __iadd__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def __isub__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... |
|
@overload |
|
def __isub__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... |
|
@overload |
|
def __isub__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... |
|
@overload |
|
def __isub__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... |
|
@overload |
|
def __isub__(self: NDArray[timedelta64], other: _ArrayLikeTD64_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __isub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co) -> NDArray[datetime64]: ... |
|
@overload |
|
def __isub__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def __imul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __imul__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... |
|
@overload |
|
def __imul__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... |
|
@overload |
|
def __imul__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... |
|
@overload |
|
def __imul__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... |
|
@overload |
|
def __imul__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __imul__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def __itruediv__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... |
|
@overload |
|
def __itruediv__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... |
|
@overload |
|
def __itruediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ... |
|
@overload |
|
def __itruediv__(self: NDArray[timedelta64], other: _ArrayLikeInt_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __itruediv__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def __ifloordiv__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... |
|
@overload |
|
def __ifloordiv__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... |
|
@overload |
|
def __ifloordiv__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... |
|
@overload |
|
def __ifloordiv__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... |
|
@overload |
|
def __ifloordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co) -> NoReturn: ... |
|
@overload |
|
def __ifloordiv__(self: NDArray[timedelta64], other: _ArrayLikeInt_co) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __ifloordiv__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def __ipow__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... |
|
@overload |
|
def __ipow__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... |
|
@overload |
|
def __ipow__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... |
|
@overload |
|
def __ipow__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... |
|
@overload |
|
def __ipow__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def __imod__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... |
|
@overload |
|
def __imod__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... |
|
@overload |
|
def __imod__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... |
|
@overload |
|
def __imod__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]]) -> NDArray[timedelta64]: ... |
|
@overload |
|
def __imod__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def __ilshift__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... |
|
@overload |
|
def __ilshift__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... |
|
@overload |
|
def __ilshift__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def __irshift__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... |
|
@overload |
|
def __irshift__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... |
|
@overload |
|
def __irshift__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def __iand__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __iand__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... |
|
@overload |
|
def __iand__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... |
|
@overload |
|
def __iand__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def __ixor__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __ixor__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... |
|
@overload |
|
def __ixor__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... |
|
@overload |
|
def __ixor__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def __ior__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __ior__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co | _IntLike_co) -> NDArray[unsignedinteger[_NBit1]]: ... |
|
@overload |
|
def __ior__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... |
|
@overload |
|
def __ior__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def __imatmul__(self: NDArray[bool_], other: _ArrayLikeBool_co) -> NDArray[bool_]: ... |
|
@overload |
|
def __imatmul__(self: NDArray[unsignedinteger[_NBit1]], other: _ArrayLikeUInt_co) -> NDArray[unsignedinteger[_NBit1]]: ... |
|
@overload |
|
def __imatmul__(self: NDArray[signedinteger[_NBit1]], other: _ArrayLikeInt_co) -> NDArray[signedinteger[_NBit1]]: ... |
|
@overload |
|
def __imatmul__(self: NDArray[floating[_NBit1]], other: _ArrayLikeFloat_co) -> NDArray[floating[_NBit1]]: ... |
|
@overload |
|
def __imatmul__(self: NDArray[complexfloating[_NBit1, _NBit1]], other: _ArrayLikeComplex_co) -> NDArray[complexfloating[_NBit1, _NBit1]]: ... |
|
@overload |
|
def __imatmul__(self: NDArray[object_], other: Any) -> NDArray[object_]: ... |
|
|
|
def __dlpack__(self: NDArray[number[Any]], *, stream: None = ...) -> _PyCapsule: ... |
|
def __dlpack_device__(self) -> tuple[int, L[0]]: ... |
|
|
|
# Keep `dtype` at the bottom to avoid name conflicts with `np.dtype` |
|
@property |
|
def dtype(self) -> _DType_co: ... |
|
|
|
# NOTE: while `np.generic` is not technically an instance of `ABCMeta`, |
|
# the `@abstractmethod` decorator is herein used to (forcefully) deny |
|
# the creation of `np.generic` instances. |
|
# The `# type: ignore` comments are necessary to silence mypy errors regarding |
|
# the missing `ABCMeta` metaclass. |
|
|
|
# See https://github.com/numpy/numpy-stubs/pull/80 for more details. |
|
|
|
_ScalarType = TypeVar("_ScalarType", bound=generic) |
|
_NBit1 = TypeVar("_NBit1", bound=NBitBase) |
|
_NBit2 = TypeVar("_NBit2", bound=NBitBase) |
|
|
|
class generic(_ArrayOrScalarCommon): |
|
@abstractmethod |
|
def __init__(self, *args: Any, **kwargs: Any) -> None: ... |
|
@overload |
|
def __array__(self: _ScalarType, dtype: None = ..., /) -> ndarray[Any, _dtype[_ScalarType]]: ... |
|
@overload |
|
def __array__(self, dtype: _DType, /) -> ndarray[Any, _DType]: ... |
|
def __hash__(self) -> int: ... |
|
@property |
|
def base(self) -> None: ... |
|
@property |
|
def ndim(self) -> L[0]: ... |
|
@property |
|
def size(self) -> L[1]: ... |
|
@property |
|
def shape(self) -> tuple[()]: ... |
|
@property |
|
def strides(self) -> tuple[()]: ... |
|
def byteswap(self: _ScalarType, inplace: L[False] = ...) -> _ScalarType: ... |
|
@property |
|
def flat(self: _ScalarType) -> flatiter[ndarray[Any, _dtype[_ScalarType]]]: ... |
|
|
|
if sys.version_info >= (3, 12): |
|
def __buffer__(self, flags: int, /) -> memoryview: ... |
|
|
|
@overload |
|
def astype( |
|
self, |
|
dtype: _DTypeLike[_ScalarType], |
|
order: _OrderKACF = ..., |
|
casting: _CastingKind = ..., |
|
subok: bool = ..., |
|
copy: bool | _CopyMode = ..., |
|
) -> _ScalarType: ... |
|
@overload |
|
def astype( |
|
self, |
|
dtype: DTypeLike, |
|
order: _OrderKACF = ..., |
|
casting: _CastingKind = ..., |
|
subok: bool = ..., |
|
copy: bool | _CopyMode = ..., |
|
) -> Any: ... |
|
|
|
# NOTE: `view` will perform a 0D->scalar cast, |
|
# thus the array `type` is irrelevant to the output type |
|
@overload |
|
def view( |
|
self: _ScalarType, |
|
type: type[ndarray[Any, Any]] = ..., |
|
) -> _ScalarType: ... |
|
@overload |
|
def view( |
|
self, |
|
dtype: _DTypeLike[_ScalarType], |
|
type: type[ndarray[Any, Any]] = ..., |
|
) -> _ScalarType: ... |
|
@overload |
|
def view( |
|
self, |
|
dtype: DTypeLike, |
|
type: type[ndarray[Any, Any]] = ..., |
|
) -> Any: ... |
|
|
|
@overload |
|
def getfield( |
|
self, |
|
dtype: _DTypeLike[_ScalarType], |
|
offset: SupportsIndex = ... |
|
) -> _ScalarType: ... |
|
@overload |
|
def getfield( |
|
self, |
|
dtype: DTypeLike, |
|
offset: SupportsIndex = ... |
|
) -> Any: ... |
|
|
|
def item( |
|
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /, |
|
) -> Any: ... |
|
|
|
@overload |
|
def take( # type: ignore[misc] |
|
self: _ScalarType, |
|
indices: _IntLike_co, |
|
axis: None | SupportsIndex = ..., |
|
out: None = ..., |
|
mode: _ModeKind = ..., |
|
) -> _ScalarType: ... |
|
@overload |
|
def take( # type: ignore[misc] |
|
self: _ScalarType, |
|
indices: _ArrayLikeInt_co, |
|
axis: None | SupportsIndex = ..., |
|
out: None = ..., |
|
mode: _ModeKind = ..., |
|
) -> ndarray[Any, _dtype[_ScalarType]]: ... |
|
@overload |
|
def take( |
|
self, |
|
indices: _ArrayLikeInt_co, |
|
axis: None | SupportsIndex = ..., |
|
out: _NdArraySubClass = ..., |
|
mode: _ModeKind = ..., |
|
) -> _NdArraySubClass: ... |
|
|
|
def repeat( |
|
self: _ScalarType, |
|
repeats: _ArrayLikeInt_co, |
|
axis: None | SupportsIndex = ..., |
|
) -> ndarray[Any, _dtype[_ScalarType]]: ... |
|
|
|
def flatten( |
|
self: _ScalarType, |
|
order: _OrderKACF = ..., |
|
) -> ndarray[Any, _dtype[_ScalarType]]: ... |
|
|
|
def ravel( |
|
self: _ScalarType, |
|
order: _OrderKACF = ..., |
|
) -> ndarray[Any, _dtype[_ScalarType]]: ... |
|
|
|
@overload |
|
def reshape( |
|
self: _ScalarType, shape: _ShapeLike, /, *, order: _OrderACF = ... |
|
) -> ndarray[Any, _dtype[_ScalarType]]: ... |
|
@overload |
|
def reshape( |
|
self: _ScalarType, *shape: SupportsIndex, order: _OrderACF = ... |
|
) -> ndarray[Any, _dtype[_ScalarType]]: ... |
|
|
|
def squeeze( |
|
self: _ScalarType, axis: None | L[0] | tuple[()] = ... |
|
) -> _ScalarType: ... |
|
def transpose(self: _ScalarType, axes: None | tuple[()] = ..., /) -> _ScalarType: ... |
|
# Keep `dtype` at the bottom to avoid name conflicts with `np.dtype` |
|
@property |
|
def dtype(self: _ScalarType) -> _dtype[_ScalarType]: ... |
|
|
|
class number(generic, Generic[_NBit1]): # type: ignore |
|
@property |
|
def real(self: _ArraySelf) -> _ArraySelf: ... |
|
@property |
|
def imag(self: _ArraySelf) -> _ArraySelf: ... |
|
def __class_getitem__(self, item: Any) -> GenericAlias: ... |
|
def __int__(self) -> int: ... |
|
def __float__(self) -> float: ... |
|
def __complex__(self) -> complex: ... |
|
def __neg__(self: _ArraySelf) -> _ArraySelf: ... |
|
def __pos__(self: _ArraySelf) -> _ArraySelf: ... |
|
def __abs__(self: _ArraySelf) -> _ArraySelf: ... |
|
# Ensure that objects annotated as `number` support arithmetic operations |
|
__add__: _NumberOp |
|
__radd__: _NumberOp |
|
__sub__: _NumberOp |
|
__rsub__: _NumberOp |
|
__mul__: _NumberOp |
|
__rmul__: _NumberOp |
|
__floordiv__: _NumberOp |
|
__rfloordiv__: _NumberOp |
|
__pow__: _NumberOp |
|
__rpow__: _NumberOp |
|
__truediv__: _NumberOp |
|
__rtruediv__: _NumberOp |
|
__lt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] |
|
__le__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] |
|
__gt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] |
|
__ge__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] |
|
|
|
class bool_(generic): |
|
def __init__(self, value: object = ..., /) -> None: ... |
|
def item( |
|
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /, |
|
) -> bool: ... |
|
def tolist(self) -> bool: ... |
|
@property |
|
def real(self: _ArraySelf) -> _ArraySelf: ... |
|
@property |
|
def imag(self: _ArraySelf) -> _ArraySelf: ... |
|
def __int__(self) -> int: ... |
|
def __float__(self) -> float: ... |
|
def __complex__(self) -> complex: ... |
|
def __abs__(self: _ArraySelf) -> _ArraySelf: ... |
|
__add__: _BoolOp[bool_] |
|
__radd__: _BoolOp[bool_] |
|
__sub__: _BoolSub |
|
__rsub__: _BoolSub |
|
__mul__: _BoolOp[bool_] |
|
__rmul__: _BoolOp[bool_] |
|
__floordiv__: _BoolOp[int8] |
|
__rfloordiv__: _BoolOp[int8] |
|
__pow__: _BoolOp[int8] |
|
__rpow__: _BoolOp[int8] |
|
__truediv__: _BoolTrueDiv |
|
__rtruediv__: _BoolTrueDiv |
|
def __invert__(self) -> bool_: ... |
|
__lshift__: _BoolBitOp[int8] |
|
__rlshift__: _BoolBitOp[int8] |
|
__rshift__: _BoolBitOp[int8] |
|
__rrshift__: _BoolBitOp[int8] |
|
__and__: _BoolBitOp[bool_] |
|
__rand__: _BoolBitOp[bool_] |
|
__xor__: _BoolBitOp[bool_] |
|
__rxor__: _BoolBitOp[bool_] |
|
__or__: _BoolBitOp[bool_] |
|
__ror__: _BoolBitOp[bool_] |
|
__mod__: _BoolMod |
|
__rmod__: _BoolMod |
|
__divmod__: _BoolDivMod |
|
__rdivmod__: _BoolDivMod |
|
__lt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] |
|
__le__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] |
|
__gt__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] |
|
__ge__: _ComparisonOp[_NumberLike_co, _ArrayLikeNumber_co] |
|
|
|
class object_(generic): |
|
def __init__(self, value: object = ..., /) -> None: ... |
|
@property |
|
def real(self: _ArraySelf) -> _ArraySelf: ... |
|
@property |
|
def imag(self: _ArraySelf) -> _ArraySelf: ... |
|
# The 3 protocols below may or may not raise, |
|
# depending on the underlying object |
|
def __int__(self) -> int: ... |
|
def __float__(self) -> float: ... |
|
def __complex__(self) -> complex: ... |
|
|
|
if sys.version_info >= (3, 12): |
|
def __release_buffer__(self, buffer: memoryview, /) -> None: ... |
|
|
|
# The `datetime64` constructors requires an object with the three attributes below, |
|
# and thus supports datetime duck typing |
|
class _DatetimeScalar(Protocol): |
|
@property |
|
def day(self) -> int: ... |
|
@property |
|
def month(self) -> int: ... |
|
@property |
|
def year(self) -> int: ... |
|
|
|
# TODO: `item`/`tolist` returns either `dt.date`, `dt.datetime` or `int` |
|
# depending on the unit |
|
class datetime64(generic): |
|
@overload |
|
def __init__( |
|
self, |
|
value: None | datetime64 | _CharLike_co | _DatetimeScalar = ..., |
|
format: _CharLike_co | tuple[_CharLike_co, _IntLike_co] = ..., |
|
/, |
|
) -> None: ... |
|
@overload |
|
def __init__( |
|
self, |
|
value: int, |
|
format: _CharLike_co | tuple[_CharLike_co, _IntLike_co], |
|
/, |
|
) -> None: ... |
|
def __add__(self, other: _TD64Like_co) -> datetime64: ... |
|
def __radd__(self, other: _TD64Like_co) -> datetime64: ... |
|
@overload |
|
def __sub__(self, other: datetime64) -> timedelta64: ... |
|
@overload |
|
def __sub__(self, other: _TD64Like_co) -> datetime64: ... |
|
def __rsub__(self, other: datetime64) -> timedelta64: ... |
|
__lt__: _ComparisonOp[datetime64, _ArrayLikeDT64_co] |
|
__le__: _ComparisonOp[datetime64, _ArrayLikeDT64_co] |
|
__gt__: _ComparisonOp[datetime64, _ArrayLikeDT64_co] |
|
__ge__: _ComparisonOp[datetime64, _ArrayLikeDT64_co] |
|
|
|
_IntValue = Union[SupportsInt, _CharLike_co, SupportsIndex] |
|
_FloatValue = Union[None, _CharLike_co, SupportsFloat, SupportsIndex] |
|
_ComplexValue = Union[ |
|
None, |
|
_CharLike_co, |
|
SupportsFloat, |
|
SupportsComplex, |
|
SupportsIndex, |
|
complex, # `complex` is not a subtype of `SupportsComplex` |
|
] |
|
|
|
class integer(number[_NBit1]): # type: ignore |
|
@property |
|
def numerator(self: _ScalarType) -> _ScalarType: ... |
|
@property |
|
def denominator(self) -> L[1]: ... |
|
@overload |
|
def __round__(self, ndigits: None = ...) -> int: ... |
|
@overload |
|
def __round__(self: _ScalarType, ndigits: SupportsIndex) -> _ScalarType: ... |
|
|
|
# NOTE: `__index__` is technically defined in the bottom-most |
|
# sub-classes (`int64`, `uint32`, etc) |
|
def item( |
|
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /, |
|
) -> int: ... |
|
def tolist(self) -> int: ... |
|
def is_integer(self) -> L[True]: ... |
|
def bit_count(self: _ScalarType) -> int: ... |
|
def __index__(self) -> int: ... |
|
__truediv__: _IntTrueDiv[_NBit1] |
|
__rtruediv__: _IntTrueDiv[_NBit1] |
|
def __mod__(self, value: _IntLike_co) -> integer[Any]: ... |
|
def __rmod__(self, value: _IntLike_co) -> integer[Any]: ... |
|
def __invert__(self: _IntType) -> _IntType: ... |
|
# Ensure that objects annotated as `integer` support bit-wise operations |
|
def __lshift__(self, other: _IntLike_co) -> integer[Any]: ... |
|
def __rlshift__(self, other: _IntLike_co) -> integer[Any]: ... |
|
def __rshift__(self, other: _IntLike_co) -> integer[Any]: ... |
|
def __rrshift__(self, other: _IntLike_co) -> integer[Any]: ... |
|
def __and__(self, other: _IntLike_co) -> integer[Any]: ... |
|
def __rand__(self, other: _IntLike_co) -> integer[Any]: ... |
|
def __or__(self, other: _IntLike_co) -> integer[Any]: ... |
|
def __ror__(self, other: _IntLike_co) -> integer[Any]: ... |
|
def __xor__(self, other: _IntLike_co) -> integer[Any]: ... |
|
def __rxor__(self, other: _IntLike_co) -> integer[Any]: ... |
|
|
|
class signedinteger(integer[_NBit1]): |
|
def __init__(self, value: _IntValue = ..., /) -> None: ... |
|
__add__: _SignedIntOp[_NBit1] |
|
__radd__: _SignedIntOp[_NBit1] |
|
__sub__: _SignedIntOp[_NBit1] |
|
__rsub__: _SignedIntOp[_NBit1] |
|
__mul__: _SignedIntOp[_NBit1] |
|
__rmul__: _SignedIntOp[_NBit1] |
|
__floordiv__: _SignedIntOp[_NBit1] |
|
__rfloordiv__: _SignedIntOp[_NBit1] |
|
__pow__: _SignedIntOp[_NBit1] |
|
__rpow__: _SignedIntOp[_NBit1] |
|
__lshift__: _SignedIntBitOp[_NBit1] |
|
__rlshift__: _SignedIntBitOp[_NBit1] |
|
__rshift__: _SignedIntBitOp[_NBit1] |
|
__rrshift__: _SignedIntBitOp[_NBit1] |
|
__and__: _SignedIntBitOp[_NBit1] |
|
__rand__: _SignedIntBitOp[_NBit1] |
|
__xor__: _SignedIntBitOp[_NBit1] |
|
__rxor__: _SignedIntBitOp[_NBit1] |
|
__or__: _SignedIntBitOp[_NBit1] |
|
__ror__: _SignedIntBitOp[_NBit1] |
|
__mod__: _SignedIntMod[_NBit1] |
|
__rmod__: _SignedIntMod[_NBit1] |
|
__divmod__: _SignedIntDivMod[_NBit1] |
|
__rdivmod__: _SignedIntDivMod[_NBit1] |
|
|
|
int8 = signedinteger[_8Bit] |
|
int16 = signedinteger[_16Bit] |
|
int32 = signedinteger[_32Bit] |
|
int64 = signedinteger[_64Bit] |
|
|
|
byte = signedinteger[_NBitByte] |
|
short = signedinteger[_NBitShort] |
|
intc = signedinteger[_NBitIntC] |
|
intp = signedinteger[_NBitIntP] |
|
int_ = signedinteger[_NBitInt] |
|
longlong = signedinteger[_NBitLongLong] |
|
|
|
# TODO: `item`/`tolist` returns either `dt.timedelta` or `int` |
|
# depending on the unit |
|
class timedelta64(generic): |
|
def __init__( |
|
self, |
|
value: None | int | _CharLike_co | dt.timedelta | timedelta64 = ..., |
|
format: _CharLike_co | tuple[_CharLike_co, _IntLike_co] = ..., |
|
/, |
|
) -> None: ... |
|
@property |
|
def numerator(self: _ScalarType) -> _ScalarType: ... |
|
@property |
|
def denominator(self) -> L[1]: ... |
|
|
|
# NOTE: Only a limited number of units support conversion |
|
# to builtin scalar types: `Y`, `M`, `ns`, `ps`, `fs`, `as` |
|
def __int__(self) -> int: ... |
|
def __float__(self) -> float: ... |
|
def __complex__(self) -> complex: ... |
|
def __neg__(self: _ArraySelf) -> _ArraySelf: ... |
|
def __pos__(self: _ArraySelf) -> _ArraySelf: ... |
|
def __abs__(self: _ArraySelf) -> _ArraySelf: ... |
|
def __add__(self, other: _TD64Like_co) -> timedelta64: ... |
|
def __radd__(self, other: _TD64Like_co) -> timedelta64: ... |
|
def __sub__(self, other: _TD64Like_co) -> timedelta64: ... |
|
def __rsub__(self, other: _TD64Like_co) -> timedelta64: ... |
|
def __mul__(self, other: _FloatLike_co) -> timedelta64: ... |
|
def __rmul__(self, other: _FloatLike_co) -> timedelta64: ... |
|
__truediv__: _TD64Div[float64] |
|
__floordiv__: _TD64Div[int64] |
|
def __rtruediv__(self, other: timedelta64) -> float64: ... |
|
def __rfloordiv__(self, other: timedelta64) -> int64: ... |
|
def __mod__(self, other: timedelta64) -> timedelta64: ... |
|
def __rmod__(self, other: timedelta64) -> timedelta64: ... |
|
def __divmod__(self, other: timedelta64) -> tuple[int64, timedelta64]: ... |
|
def __rdivmod__(self, other: timedelta64) -> tuple[int64, timedelta64]: ... |
|
__lt__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co] |
|
__le__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co] |
|
__gt__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co] |
|
__ge__: _ComparisonOp[_TD64Like_co, _ArrayLikeTD64_co] |
|
|
|
class unsignedinteger(integer[_NBit1]): |
|
# NOTE: `uint64 + signedinteger -> float64` |
|
def __init__(self, value: _IntValue = ..., /) -> None: ... |
|
__add__: _UnsignedIntOp[_NBit1] |
|
__radd__: _UnsignedIntOp[_NBit1] |
|
__sub__: _UnsignedIntOp[_NBit1] |
|
__rsub__: _UnsignedIntOp[_NBit1] |
|
__mul__: _UnsignedIntOp[_NBit1] |
|
__rmul__: _UnsignedIntOp[_NBit1] |
|
__floordiv__: _UnsignedIntOp[_NBit1] |
|
__rfloordiv__: _UnsignedIntOp[_NBit1] |
|
__pow__: _UnsignedIntOp[_NBit1] |
|
__rpow__: _UnsignedIntOp[_NBit1] |
|
__lshift__: _UnsignedIntBitOp[_NBit1] |
|
__rlshift__: _UnsignedIntBitOp[_NBit1] |
|
__rshift__: _UnsignedIntBitOp[_NBit1] |
|
__rrshift__: _UnsignedIntBitOp[_NBit1] |
|
__and__: _UnsignedIntBitOp[_NBit1] |
|
__rand__: _UnsignedIntBitOp[_NBit1] |
|
__xor__: _UnsignedIntBitOp[_NBit1] |
|
__rxor__: _UnsignedIntBitOp[_NBit1] |
|
__or__: _UnsignedIntBitOp[_NBit1] |
|
__ror__: _UnsignedIntBitOp[_NBit1] |
|
__mod__: _UnsignedIntMod[_NBit1] |
|
__rmod__: _UnsignedIntMod[_NBit1] |
|
__divmod__: _UnsignedIntDivMod[_NBit1] |
|
__rdivmod__: _UnsignedIntDivMod[_NBit1] |
|
|
|
uint8 = unsignedinteger[_8Bit] |
|
uint16 = unsignedinteger[_16Bit] |
|
uint32 = unsignedinteger[_32Bit] |
|
uint64 = unsignedinteger[_64Bit] |
|
|
|
ubyte = unsignedinteger[_NBitByte] |
|
ushort = unsignedinteger[_NBitShort] |
|
uintc = unsignedinteger[_NBitIntC] |
|
uintp = unsignedinteger[_NBitIntP] |
|
uint = unsignedinteger[_NBitInt] |
|
ulonglong = unsignedinteger[_NBitLongLong] |
|
|
|
class inexact(number[_NBit1]): # type: ignore |
|
def __getnewargs__(self: inexact[_64Bit]) -> tuple[float, ...]: ... |
|
|
|
_IntType = TypeVar("_IntType", bound=integer[Any]) |
|
_FloatType = TypeVar('_FloatType', bound=floating[Any]) |
|
|
|
class floating(inexact[_NBit1]): |
|
def __init__(self, value: _FloatValue = ..., /) -> None: ... |
|
def item( |
|
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., |
|
/, |
|
) -> float: ... |
|
def tolist(self) -> float: ... |
|
def is_integer(self) -> bool: ... |
|
def hex(self: float64) -> str: ... |
|
@classmethod |
|
def fromhex(cls: type[float64], string: str, /) -> float64: ... |
|
def as_integer_ratio(self) -> tuple[int, int]: ... |
|
def __ceil__(self: float64) -> int: ... |
|
def __floor__(self: float64) -> int: ... |
|
def __trunc__(self: float64) -> int: ... |
|
def __getnewargs__(self: float64) -> tuple[float]: ... |
|
def __getformat__(self: float64, typestr: L["double", "float"], /) -> str: ... |
|
@overload |
|
def __round__(self, ndigits: None = ...) -> int: ... |
|
@overload |
|
def __round__(self: _ScalarType, ndigits: SupportsIndex) -> _ScalarType: ... |
|
__add__: _FloatOp[_NBit1] |
|
__radd__: _FloatOp[_NBit1] |
|
__sub__: _FloatOp[_NBit1] |
|
__rsub__: _FloatOp[_NBit1] |
|
__mul__: _FloatOp[_NBit1] |
|
__rmul__: _FloatOp[_NBit1] |
|
__truediv__: _FloatOp[_NBit1] |
|
__rtruediv__: _FloatOp[_NBit1] |
|
__floordiv__: _FloatOp[_NBit1] |
|
__rfloordiv__: _FloatOp[_NBit1] |
|
__pow__: _FloatOp[_NBit1] |
|
__rpow__: _FloatOp[_NBit1] |
|
__mod__: _FloatMod[_NBit1] |
|
__rmod__: _FloatMod[_NBit1] |
|
__divmod__: _FloatDivMod[_NBit1] |
|
__rdivmod__: _FloatDivMod[_NBit1] |
|
|
|
float16 = floating[_16Bit] |
|
float32 = floating[_32Bit] |
|
float64 = floating[_64Bit] |
|
|
|
half = floating[_NBitHalf] |
|
single = floating[_NBitSingle] |
|
double = floating[_NBitDouble] |
|
float_ = floating[_NBitDouble] |
|
longdouble = floating[_NBitLongDouble] |
|
longfloat = floating[_NBitLongDouble] |
|
|
|
# The main reason for `complexfloating` having two typevars is cosmetic. |
|
# It is used to clarify why `complex128`s precision is `_64Bit`, the latter |
|
# describing the two 64 bit floats representing its real and imaginary component |
|
|
|
class complexfloating(inexact[_NBit1], Generic[_NBit1, _NBit2]): |
|
def __init__(self, value: _ComplexValue = ..., /) -> None: ... |
|
def item( |
|
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /, |
|
) -> complex: ... |
|
def tolist(self) -> complex: ... |
|
@property |
|
def real(self) -> floating[_NBit1]: ... # type: ignore[override] |
|
@property |
|
def imag(self) -> floating[_NBit2]: ... # type: ignore[override] |
|
def __abs__(self) -> floating[_NBit1]: ... # type: ignore[override] |
|
def __getnewargs__(self: complex128) -> tuple[float, float]: ... |
|
# NOTE: Deprecated |
|
# def __round__(self, ndigits=...): ... |
|
__add__: _ComplexOp[_NBit1] |
|
__radd__: _ComplexOp[_NBit1] |
|
__sub__: _ComplexOp[_NBit1] |
|
__rsub__: _ComplexOp[_NBit1] |
|
__mul__: _ComplexOp[_NBit1] |
|
__rmul__: _ComplexOp[_NBit1] |
|
__truediv__: _ComplexOp[_NBit1] |
|
__rtruediv__: _ComplexOp[_NBit1] |
|
__pow__: _ComplexOp[_NBit1] |
|
__rpow__: _ComplexOp[_NBit1] |
|
|
|
complex64 = complexfloating[_32Bit, _32Bit] |
|
complex128 = complexfloating[_64Bit, _64Bit] |
|
|
|
csingle = complexfloating[_NBitSingle, _NBitSingle] |
|
singlecomplex = complexfloating[_NBitSingle, _NBitSingle] |
|
cdouble = complexfloating[_NBitDouble, _NBitDouble] |
|
complex_ = complexfloating[_NBitDouble, _NBitDouble] |
|
cfloat = complexfloating[_NBitDouble, _NBitDouble] |
|
clongdouble = complexfloating[_NBitLongDouble, _NBitLongDouble] |
|
clongfloat = complexfloating[_NBitLongDouble, _NBitLongDouble] |
|
longcomplex = complexfloating[_NBitLongDouble, _NBitLongDouble] |
|
|
|
class flexible(generic): ... # type: ignore |
|
|
|
# TODO: `item`/`tolist` returns either `bytes` or `tuple` |
|
# depending on whether or not it's used as an opaque bytes sequence |
|
# or a structure |
|
class void(flexible): |
|
@overload |
|
def __init__(self, value: _IntLike_co | bytes, /, dtype : None = ...) -> None: ... |
|
@overload |
|
def __init__(self, value: Any, /, dtype: _DTypeLikeVoid) -> None: ... |
|
@property |
|
def real(self: _ArraySelf) -> _ArraySelf: ... |
|
@property |
|
def imag(self: _ArraySelf) -> _ArraySelf: ... |
|
def setfield( |
|
self, val: ArrayLike, dtype: DTypeLike, offset: int = ... |
|
) -> None: ... |
|
@overload |
|
def __getitem__(self, key: str | SupportsIndex) -> Any: ... |
|
@overload |
|
def __getitem__(self, key: list[str]) -> void: ... |
|
def __setitem__( |
|
self, |
|
key: str | list[str] | SupportsIndex, |
|
value: ArrayLike, |
|
) -> None: ... |
|
|
|
class character(flexible): # type: ignore |
|
def __int__(self) -> int: ... |
|
def __float__(self) -> float: ... |
|
|
|
# NOTE: Most `np.bytes_` / `np.str_` methods return their |
|
# builtin `bytes` / `str` counterpart |
|
|
|
class bytes_(character, bytes): |
|
@overload |
|
def __init__(self, value: object = ..., /) -> None: ... |
|
@overload |
|
def __init__( |
|
self, value: str, /, encoding: str = ..., errors: str = ... |
|
) -> None: ... |
|
def item( |
|
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /, |
|
) -> bytes: ... |
|
def tolist(self) -> bytes: ... |
|
|
|
string_ = bytes_ |
|
|
|
class str_(character, str): |
|
@overload |
|
def __init__(self, value: object = ..., /) -> None: ... |
|
@overload |
|
def __init__( |
|
self, value: bytes, /, encoding: str = ..., errors: str = ... |
|
) -> None: ... |
|
def item( |
|
self, args: L[0] | tuple[()] | tuple[L[0]] = ..., /, |
|
) -> str: ... |
|
def tolist(self) -> str: ... |
|
|
|
unicode_ = str_ |
|
|
|
# |
|
# Constants |
|
# |
|
|
|
Inf: Final[float] |
|
Infinity: Final[float] |
|
NAN: Final[float] |
|
NINF: Final[float] |
|
NZERO: Final[float] |
|
NaN: Final[float] |
|
PINF: Final[float] |
|
PZERO: Final[float] |
|
e: Final[float] |
|
euler_gamma: Final[float] |
|
inf: Final[float] |
|
infty: Final[float] |
|
nan: Final[float] |
|
pi: Final[float] |
|
|
|
ERR_IGNORE: L[0] |
|
ERR_WARN: L[1] |
|
ERR_RAISE: L[2] |
|
ERR_CALL: L[3] |
|
ERR_PRINT: L[4] |
|
ERR_LOG: L[5] |
|
ERR_DEFAULT: L[521] |
|
|
|
SHIFT_DIVIDEBYZERO: L[0] |
|
SHIFT_OVERFLOW: L[3] |
|
SHIFT_UNDERFLOW: L[6] |
|
SHIFT_INVALID: L[9] |
|
|
|
FPE_DIVIDEBYZERO: L[1] |
|
FPE_OVERFLOW: L[2] |
|
FPE_UNDERFLOW: L[4] |
|
FPE_INVALID: L[8] |
|
|
|
FLOATING_POINT_SUPPORT: L[1] |
|
UFUNC_BUFSIZE_DEFAULT = BUFSIZE |
|
|
|
little_endian: Final[bool] |
|
True_: Final[bool_] |
|
False_: Final[bool_] |
|
|
|
UFUNC_PYVALS_NAME: L["UFUNC_PYVALS"] |
|
|
|
newaxis: None |
|
|
|
# See `numpy._typing._ufunc` for more concrete nin-/nout-specific stubs |
|
@final |
|
class ufunc: |
|
@property |
|
def __name__(self) -> str: ... |
|
@property |
|
def __doc__(self) -> str: ... |
|
__call__: Callable[..., Any] |
|
@property |
|
def nin(self) -> int: ... |
|
@property |
|
def nout(self) -> int: ... |
|
@property |
|
def nargs(self) -> int: ... |
|
@property |
|
def ntypes(self) -> int: ... |
|
@property |
|
def types(self) -> list[str]: ... |
|
# Broad return type because it has to encompass things like |
|
# |
|
# >>> np.logical_and.identity is True |
|
# True |
|
# >>> np.add.identity is 0 |
|
# True |
|
# >>> np.sin.identity is None |
|
# True |
|
# |
|
# and any user-defined ufuncs. |
|
@property |
|
def identity(self) -> Any: ... |
|
# This is None for ufuncs and a string for gufuncs. |
|
@property |
|
def signature(self) -> None | str: ... |
|
# The next four methods will always exist, but they will just |
|
# raise a ValueError ufuncs with that don't accept two input |
|
# arguments and return one output argument. Because of that we |
|
# can't type them very precisely. |
|
reduce: Any |
|
accumulate: Any |
|
reduceat: Any |
|
outer: Any |
|
# Similarly at won't be defined for ufuncs that return multiple |
|
# outputs, so we can't type it very precisely. |
|
at: Any |
|
|
|
# Parameters: `__name__`, `ntypes` and `identity` |
|
absolute: _UFunc_Nin1_Nout1[L['absolute'], L[20], None] |
|
add: _UFunc_Nin2_Nout1[L['add'], L[22], L[0]] |
|
arccos: _UFunc_Nin1_Nout1[L['arccos'], L[8], None] |
|
arccosh: _UFunc_Nin1_Nout1[L['arccosh'], L[8], None] |
|
arcsin: _UFunc_Nin1_Nout1[L['arcsin'], L[8], None] |
|
arcsinh: _UFunc_Nin1_Nout1[L['arcsinh'], L[8], None] |
|
arctan2: _UFunc_Nin2_Nout1[L['arctan2'], L[5], None] |
|
arctan: _UFunc_Nin1_Nout1[L['arctan'], L[8], None] |
|
arctanh: _UFunc_Nin1_Nout1[L['arctanh'], L[8], None] |
|
bitwise_and: _UFunc_Nin2_Nout1[L['bitwise_and'], L[12], L[-1]] |
|
bitwise_not: _UFunc_Nin1_Nout1[L['invert'], L[12], None] |
|
bitwise_or: _UFunc_Nin2_Nout1[L['bitwise_or'], L[12], L[0]] |
|
bitwise_xor: _UFunc_Nin2_Nout1[L['bitwise_xor'], L[12], L[0]] |
|
cbrt: _UFunc_Nin1_Nout1[L['cbrt'], L[5], None] |
|
ceil: _UFunc_Nin1_Nout1[L['ceil'], L[7], None] |
|
conj: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None] |
|
conjugate: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None] |
|
copysign: _UFunc_Nin2_Nout1[L['copysign'], L[4], None] |
|
cos: _UFunc_Nin1_Nout1[L['cos'], L[9], None] |
|
cosh: _UFunc_Nin1_Nout1[L['cosh'], L[8], None] |
|
deg2rad: _UFunc_Nin1_Nout1[L['deg2rad'], L[5], None] |
|
degrees: _UFunc_Nin1_Nout1[L['degrees'], L[5], None] |
|
divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None] |
|
divmod: _UFunc_Nin2_Nout2[L['divmod'], L[15], None] |
|
equal: _UFunc_Nin2_Nout1[L['equal'], L[23], None] |
|
exp2: _UFunc_Nin1_Nout1[L['exp2'], L[8], None] |
|
exp: _UFunc_Nin1_Nout1[L['exp'], L[10], None] |
|
expm1: _UFunc_Nin1_Nout1[L['expm1'], L[8], None] |
|
fabs: _UFunc_Nin1_Nout1[L['fabs'], L[5], None] |
|
float_power: _UFunc_Nin2_Nout1[L['float_power'], L[4], None] |
|
floor: _UFunc_Nin1_Nout1[L['floor'], L[7], None] |
|
floor_divide: _UFunc_Nin2_Nout1[L['floor_divide'], L[21], None] |
|
fmax: _UFunc_Nin2_Nout1[L['fmax'], L[21], None] |
|
fmin: _UFunc_Nin2_Nout1[L['fmin'], L[21], None] |
|
fmod: _UFunc_Nin2_Nout1[L['fmod'], L[15], None] |
|
frexp: _UFunc_Nin1_Nout2[L['frexp'], L[4], None] |
|
gcd: _UFunc_Nin2_Nout1[L['gcd'], L[11], L[0]] |
|
greater: _UFunc_Nin2_Nout1[L['greater'], L[23], None] |
|
greater_equal: _UFunc_Nin2_Nout1[L['greater_equal'], L[23], None] |
|
heaviside: _UFunc_Nin2_Nout1[L['heaviside'], L[4], None] |
|
hypot: _UFunc_Nin2_Nout1[L['hypot'], L[5], L[0]] |
|
invert: _UFunc_Nin1_Nout1[L['invert'], L[12], None] |
|
isfinite: _UFunc_Nin1_Nout1[L['isfinite'], L[20], None] |
|
isinf: _UFunc_Nin1_Nout1[L['isinf'], L[20], None] |
|
isnan: _UFunc_Nin1_Nout1[L['isnan'], L[20], None] |
|
isnat: _UFunc_Nin1_Nout1[L['isnat'], L[2], None] |
|
lcm: _UFunc_Nin2_Nout1[L['lcm'], L[11], None] |
|
ldexp: _UFunc_Nin2_Nout1[L['ldexp'], L[8], None] |
|
left_shift: _UFunc_Nin2_Nout1[L['left_shift'], L[11], None] |
|
less: _UFunc_Nin2_Nout1[L['less'], L[23], None] |
|
less_equal: _UFunc_Nin2_Nout1[L['less_equal'], L[23], None] |
|
log10: _UFunc_Nin1_Nout1[L['log10'], L[8], None] |
|
log1p: _UFunc_Nin1_Nout1[L['log1p'], L[8], None] |
|
log2: _UFunc_Nin1_Nout1[L['log2'], L[8], None] |
|
log: _UFunc_Nin1_Nout1[L['log'], L[10], None] |
|
logaddexp2: _UFunc_Nin2_Nout1[L['logaddexp2'], L[4], float] |
|
logaddexp: _UFunc_Nin2_Nout1[L['logaddexp'], L[4], float] |
|
logical_and: _UFunc_Nin2_Nout1[L['logical_and'], L[20], L[True]] |
|
logical_not: _UFunc_Nin1_Nout1[L['logical_not'], L[20], None] |
|
logical_or: _UFunc_Nin2_Nout1[L['logical_or'], L[20], L[False]] |
|
logical_xor: _UFunc_Nin2_Nout1[L['logical_xor'], L[19], L[False]] |
|
matmul: _GUFunc_Nin2_Nout1[L['matmul'], L[19], None] |
|
maximum: _UFunc_Nin2_Nout1[L['maximum'], L[21], None] |
|
minimum: _UFunc_Nin2_Nout1[L['minimum'], L[21], None] |
|
mod: _UFunc_Nin2_Nout1[L['remainder'], L[16], None] |
|
modf: _UFunc_Nin1_Nout2[L['modf'], L[4], None] |
|
multiply: _UFunc_Nin2_Nout1[L['multiply'], L[23], L[1]] |
|
negative: _UFunc_Nin1_Nout1[L['negative'], L[19], None] |
|
nextafter: _UFunc_Nin2_Nout1[L['nextafter'], L[4], None] |
|
not_equal: _UFunc_Nin2_Nout1[L['not_equal'], L[23], None] |
|
positive: _UFunc_Nin1_Nout1[L['positive'], L[19], None] |
|
power: _UFunc_Nin2_Nout1[L['power'], L[18], None] |
|
rad2deg: _UFunc_Nin1_Nout1[L['rad2deg'], L[5], None] |
|
radians: _UFunc_Nin1_Nout1[L['radians'], L[5], None] |
|
reciprocal: _UFunc_Nin1_Nout1[L['reciprocal'], L[18], None] |
|
remainder: _UFunc_Nin2_Nout1[L['remainder'], L[16], None] |
|
right_shift: _UFunc_Nin2_Nout1[L['right_shift'], L[11], None] |
|
rint: _UFunc_Nin1_Nout1[L['rint'], L[10], None] |
|
sign: _UFunc_Nin1_Nout1[L['sign'], L[19], None] |
|
signbit: _UFunc_Nin1_Nout1[L['signbit'], L[4], None] |
|
sin: _UFunc_Nin1_Nout1[L['sin'], L[9], None] |
|
sinh: _UFunc_Nin1_Nout1[L['sinh'], L[8], None] |
|
spacing: _UFunc_Nin1_Nout1[L['spacing'], L[4], None] |
|
sqrt: _UFunc_Nin1_Nout1[L['sqrt'], L[10], None] |
|
square: _UFunc_Nin1_Nout1[L['square'], L[18], None] |
|
subtract: _UFunc_Nin2_Nout1[L['subtract'], L[21], None] |
|
tan: _UFunc_Nin1_Nout1[L['tan'], L[8], None] |
|
tanh: _UFunc_Nin1_Nout1[L['tanh'], L[8], None] |
|
true_divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None] |
|
trunc: _UFunc_Nin1_Nout1[L['trunc'], L[7], None] |
|
|
|
abs = absolute |
|
|
|
class _CopyMode(enum.Enum): |
|
ALWAYS: L[True] |
|
IF_NEEDED: L[False] |
|
NEVER: L[2] |
|
|
|
# Warnings |
|
class RankWarning(UserWarning): ... |
|
|
|
_CallType = TypeVar("_CallType", bound=_ErrFunc | _SupportsWrite[str]) |
|
|
|
class errstate(Generic[_CallType], ContextDecorator): |
|
call: _CallType |
|
kwargs: _ErrDictOptional |
|
|
|
# Expand `**kwargs` into explicit keyword-only arguments |
|
def __init__( |
|
self, |
|
*, |
|
call: _CallType = ..., |
|
all: None | _ErrKind = ..., |
|
divide: None | _ErrKind = ..., |
|
over: None | _ErrKind = ..., |
|
under: None | _ErrKind = ..., |
|
invalid: None | _ErrKind = ..., |
|
) -> None: ... |
|
def __enter__(self) -> None: ... |
|
def __exit__( |
|
self, |
|
exc_type: None | type[BaseException], |
|
exc_value: None | BaseException, |
|
traceback: None | TracebackType, |
|
/, |
|
) -> None: ... |
|
|
|
@contextmanager |
|
def _no_nep50_warning() -> Generator[None, None, None]: ... |
|
def _get_promotion_state() -> str: ... |
|
def _set_promotion_state(state: str, /) -> None: ... |
|
|
|
class ndenumerate(Generic[_ScalarType]): |
|
iter: flatiter[NDArray[_ScalarType]] |
|
@overload |
|
def __new__( |
|
cls, arr: _FiniteNestedSequence[_SupportsArray[dtype[_ScalarType]]], |
|
) -> ndenumerate[_ScalarType]: ... |
|
@overload |
|
def __new__(cls, arr: str | _NestedSequence[str]) -> ndenumerate[str_]: ... |
|
@overload |
|
def __new__(cls, arr: bytes | _NestedSequence[bytes]) -> ndenumerate[bytes_]: ... |
|
@overload |
|
def __new__(cls, arr: bool | _NestedSequence[bool]) -> ndenumerate[bool_]: ... |
|
@overload |
|
def __new__(cls, arr: int | _NestedSequence[int]) -> ndenumerate[int_]: ... |
|
@overload |
|
def __new__(cls, arr: float | _NestedSequence[float]) -> ndenumerate[float_]: ... |
|
@overload |
|
def __new__(cls, arr: complex | _NestedSequence[complex]) -> ndenumerate[complex_]: ... |
|
def __next__(self: ndenumerate[_ScalarType]) -> tuple[_Shape, _ScalarType]: ... |
|
def __iter__(self: _T) -> _T: ... |
|
|
|
class ndindex: |
|
@overload |
|
def __init__(self, shape: tuple[SupportsIndex, ...], /) -> None: ... |
|
@overload |
|
def __init__(self, *shape: SupportsIndex) -> None: ... |
|
def __iter__(self: _T) -> _T: ... |
|
def __next__(self) -> _Shape: ... |
|
|
|
class DataSource: |
|
def __init__( |
|
self, |
|
destpath: None | str | os.PathLike[str] = ..., |
|
) -> None: ... |
|
def __del__(self) -> None: ... |
|
def abspath(self, path: str) -> str: ... |
|
def exists(self, path: str) -> bool: ... |
|
|
|
# Whether the file-object is opened in string or bytes mode (by default) |
|
# depends on the file-extension of `path` |
|
def open( |
|
self, |
|
path: str, |
|
mode: str = ..., |
|
encoding: None | str = ..., |
|
newline: None | str = ..., |
|
) -> IO[Any]: ... |
|
|
|
# TODO: The type of each `__next__` and `iters` return-type depends |
|
# on the length and dtype of `args`; we can't describe this behavior yet |
|
# as we lack variadics (PEP 646). |
|
@final |
|
class broadcast: |
|
def __new__(cls, *args: ArrayLike) -> broadcast: ... |
|
@property |
|
def index(self) -> int: ... |
|
@property |
|
def iters(self) -> tuple[flatiter[Any], ...]: ... |
|
@property |
|
def nd(self) -> int: ... |
|
@property |
|
def ndim(self) -> int: ... |
|
@property |
|
def numiter(self) -> int: ... |
|
@property |
|
def shape(self) -> _Shape: ... |
|
@property |
|
def size(self) -> int: ... |
|
def __next__(self) -> tuple[Any, ...]: ... |
|
def __iter__(self: _T) -> _T: ... |
|
def reset(self) -> None: ... |
|
|
|
@final |
|
class busdaycalendar: |
|
def __new__( |
|
cls, |
|
weekmask: ArrayLike = ..., |
|
holidays: ArrayLike | dt.date | _NestedSequence[dt.date] = ..., |
|
) -> busdaycalendar: ... |
|
@property |
|
def weekmask(self) -> NDArray[bool_]: ... |
|
@property |
|
def holidays(self) -> NDArray[datetime64]: ... |
|
|
|
class finfo(Generic[_FloatType]): |
|
dtype: dtype[_FloatType] |
|
bits: int |
|
eps: _FloatType |
|
epsneg: _FloatType |
|
iexp: int |
|
machep: int |
|
max: _FloatType |
|
maxexp: int |
|
min: _FloatType |
|
minexp: int |
|
negep: int |
|
nexp: int |
|
nmant: int |
|
precision: int |
|
resolution: _FloatType |
|
smallest_subnormal: _FloatType |
|
@property |
|
def smallest_normal(self) -> _FloatType: ... |
|
@property |
|
def tiny(self) -> _FloatType: ... |
|
@overload |
|
def __new__( |
|
cls, dtype: inexact[_NBit1] | _DTypeLike[inexact[_NBit1]] |
|
) -> finfo[floating[_NBit1]]: ... |
|
@overload |
|
def __new__( |
|
cls, dtype: complex | float | type[complex] | type[float] |
|
) -> finfo[float_]: ... |
|
@overload |
|
def __new__( |
|
cls, dtype: str |
|
) -> finfo[floating[Any]]: ... |
|
|
|
class iinfo(Generic[_IntType]): |
|
dtype: dtype[_IntType] |
|
kind: str |
|
bits: int |
|
key: str |
|
@property |
|
def min(self) -> int: ... |
|
@property |
|
def max(self) -> int: ... |
|
|
|
@overload |
|
def __new__(cls, dtype: _IntType | _DTypeLike[_IntType]) -> iinfo[_IntType]: ... |
|
@overload |
|
def __new__(cls, dtype: int | type[int]) -> iinfo[int_]: ... |
|
@overload |
|
def __new__(cls, dtype: str) -> iinfo[Any]: ... |
|
|
|
class format_parser: |
|
dtype: dtype[void] |
|
def __init__( |
|
self, |
|
formats: DTypeLike, |
|
names: None | str | Sequence[str], |
|
titles: None | str | Sequence[str], |
|
aligned: bool = ..., |
|
byteorder: None | _ByteOrder = ..., |
|
) -> None: ... |
|
|
|
class recarray(ndarray[_ShapeType, _DType_co]): |
|
# NOTE: While not strictly mandatory, we're demanding here that arguments |
|
# for the `format_parser`- and `dtype`-based dtype constructors are |
|
# mutually exclusive |
|
@overload |
|
def __new__( |
|
subtype, |
|
shape: _ShapeLike, |
|
dtype: None = ..., |
|
buf: None | _SupportsBuffer = ..., |
|
offset: SupportsIndex = ..., |
|
strides: None | _ShapeLike = ..., |
|
*, |
|
formats: DTypeLike, |
|
names: None | str | Sequence[str] = ..., |
|
titles: None | str | Sequence[str] = ..., |
|
byteorder: None | _ByteOrder = ..., |
|
aligned: bool = ..., |
|
order: _OrderKACF = ..., |
|
) -> recarray[Any, dtype[record]]: ... |
|
@overload |
|
def __new__( |
|
subtype, |
|
shape: _ShapeLike, |
|
dtype: DTypeLike, |
|
buf: None | _SupportsBuffer = ..., |
|
offset: SupportsIndex = ..., |
|
strides: None | _ShapeLike = ..., |
|
formats: None = ..., |
|
names: None = ..., |
|
titles: None = ..., |
|
byteorder: None = ..., |
|
aligned: L[False] = ..., |
|
order: _OrderKACF = ..., |
|
) -> recarray[Any, dtype[Any]]: ... |
|
def __array_finalize__(self, obj: object) -> None: ... |
|
def __getattribute__(self, attr: str) -> Any: ... |
|
def __setattr__(self, attr: str, val: ArrayLike) -> None: ... |
|
@overload |
|
def __getitem__(self, indx: ( |
|
SupportsIndex |
|
| _ArrayLikeInt_co |
|
| tuple[SupportsIndex | _ArrayLikeInt_co, ...] |
|
)) -> Any: ... |
|
@overload |
|
def __getitem__(self: recarray[Any, dtype[void]], indx: ( |
|
None |
|
| slice |
|
| ellipsis |
|
| SupportsIndex |
|
| _ArrayLikeInt_co |
|
| tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...] |
|
)) -> recarray[Any, _DType_co]: ... |
|
@overload |
|
def __getitem__(self, indx: ( |
|
None |
|
| slice |
|
| ellipsis |
|
| SupportsIndex |
|
| _ArrayLikeInt_co |
|
| tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...] |
|
)) -> ndarray[Any, _DType_co]: ... |
|
@overload |
|
def __getitem__(self, indx: str) -> NDArray[Any]: ... |
|
@overload |
|
def __getitem__(self, indx: list[str]) -> recarray[_ShapeType, dtype[record]]: ... |
|
@overload |
|
def field(self, attr: int | str, val: None = ...) -> Any: ... |
|
@overload |
|
def field(self, attr: int | str, val: ArrayLike) -> None: ... |
|
|
|
class record(void): |
|
def __getattribute__(self, attr: str) -> Any: ... |
|
def __setattr__(self, attr: str, val: ArrayLike) -> None: ... |
|
def pprint(self) -> str: ... |
|
@overload |
|
def __getitem__(self, key: str | SupportsIndex) -> Any: ... |
|
@overload |
|
def __getitem__(self, key: list[str]) -> record: ... |
|
|
|
_NDIterFlagsKind = L[ |
|
"buffered", |
|
"c_index", |
|
"copy_if_overlap", |
|
"common_dtype", |
|
"delay_bufalloc", |
|
"external_loop", |
|
"f_index", |
|
"grow_inner", "growinner", |
|
"multi_index", |
|
"ranged", |
|
"refs_ok", |
|
"reduce_ok", |
|
"zerosize_ok", |
|
] |
|
|
|
_NDIterOpFlagsKind = L[ |
|
"aligned", |
|
"allocate", |
|
"arraymask", |
|
"copy", |
|
"config", |
|
"nbo", |
|
"no_subtype", |
|
"no_broadcast", |
|
"overlap_assume_elementwise", |
|
"readonly", |
|
"readwrite", |
|
"updateifcopy", |
|
"virtual", |
|
"writeonly", |
|
"writemasked" |
|
] |
|
|
|
@final |
|
class nditer: |
|
def __new__( |
|
cls, |
|
op: ArrayLike | Sequence[ArrayLike], |
|
flags: None | Sequence[_NDIterFlagsKind] = ..., |
|
op_flags: None | Sequence[Sequence[_NDIterOpFlagsKind]] = ..., |
|
op_dtypes: DTypeLike | Sequence[DTypeLike] = ..., |
|
order: _OrderKACF = ..., |
|
casting: _CastingKind = ..., |
|
op_axes: None | Sequence[Sequence[SupportsIndex]] = ..., |
|
itershape: None | _ShapeLike = ..., |
|
buffersize: SupportsIndex = ..., |
|
) -> nditer: ... |
|
def __enter__(self) -> nditer: ... |
|
def __exit__( |
|
self, |
|
exc_type: None | type[BaseException], |
|
exc_value: None | BaseException, |
|
traceback: None | TracebackType, |
|
) -> None: ... |
|
def __iter__(self) -> nditer: ... |
|
def __next__(self) -> tuple[NDArray[Any], ...]: ... |
|
def __len__(self) -> int: ... |
|
def __copy__(self) -> nditer: ... |
|
@overload |
|
def __getitem__(self, index: SupportsIndex) -> NDArray[Any]: ... |
|
@overload |
|
def __getitem__(self, index: slice) -> tuple[NDArray[Any], ...]: ... |
|
def __setitem__(self, index: slice | SupportsIndex, value: ArrayLike) -> None: ... |
|
def close(self) -> None: ... |
|
def copy(self) -> nditer: ... |
|
def debug_print(self) -> None: ... |
|
def enable_external_loop(self) -> None: ... |
|
def iternext(self) -> bool: ... |
|
def remove_axis(self, i: SupportsIndex, /) -> None: ... |
|
def remove_multi_index(self) -> None: ... |
|
def reset(self) -> None: ... |
|
@property |
|
def dtypes(self) -> tuple[dtype[Any], ...]: ... |
|
@property |
|
def finished(self) -> bool: ... |
|
@property |
|
def has_delayed_bufalloc(self) -> bool: ... |
|
@property |
|
def has_index(self) -> bool: ... |
|
@property |
|
def has_multi_index(self) -> bool: ... |
|
@property |
|
def index(self) -> int: ... |
|
@property |
|
def iterationneedsapi(self) -> bool: ... |
|
@property |
|
def iterindex(self) -> int: ... |
|
@property |
|
def iterrange(self) -> tuple[int, ...]: ... |
|
@property |
|
def itersize(self) -> int: ... |
|
@property |
|
def itviews(self) -> tuple[NDArray[Any], ...]: ... |
|
@property |
|
def multi_index(self) -> tuple[int, ...]: ... |
|
@property |
|
def ndim(self) -> int: ... |
|
@property |
|
def nop(self) -> int: ... |
|
@property |
|
def operands(self) -> tuple[NDArray[Any], ...]: ... |
|
@property |
|
def shape(self) -> tuple[int, ...]: ... |
|
@property |
|
def value(self) -> tuple[NDArray[Any], ...]: ... |
|
|
|
_MemMapModeKind = L[ |
|
"readonly", "r", |
|
"copyonwrite", "c", |
|
"readwrite", "r+", |
|
"write", "w+", |
|
] |
|
|
|
class memmap(ndarray[_ShapeType, _DType_co]): |
|
__array_priority__: ClassVar[float] |
|
filename: str | None |
|
offset: int |
|
mode: str |
|
@overload |
|
def __new__( |
|
subtype, |
|
filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol, |
|
dtype: type[uint8] = ..., |
|
mode: _MemMapModeKind = ..., |
|
offset: int = ..., |
|
shape: None | int | tuple[int, ...] = ..., |
|
order: _OrderKACF = ..., |
|
) -> memmap[Any, dtype[uint8]]: ... |
|
@overload |
|
def __new__( |
|
subtype, |
|
filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol, |
|
dtype: _DTypeLike[_ScalarType], |
|
mode: _MemMapModeKind = ..., |
|
offset: int = ..., |
|
shape: None | int | tuple[int, ...] = ..., |
|
order: _OrderKACF = ..., |
|
) -> memmap[Any, dtype[_ScalarType]]: ... |
|
@overload |
|
def __new__( |
|
subtype, |
|
filename: str | bytes | os.PathLike[str] | os.PathLike[bytes] | _MemMapIOProtocol, |
|
dtype: DTypeLike, |
|
mode: _MemMapModeKind = ..., |
|
offset: int = ..., |
|
shape: None | int | tuple[int, ...] = ..., |
|
order: _OrderKACF = ..., |
|
) -> memmap[Any, dtype[Any]]: ... |
|
def __array_finalize__(self, obj: object) -> None: ... |
|
def __array_wrap__( |
|
self, |
|
array: memmap[_ShapeType, _DType_co], |
|
context: None | tuple[ufunc, tuple[Any, ...], int] = ..., |
|
) -> Any: ... |
|
def flush(self) -> None: ... |
|
|
|
# TODO: Add a mypy plugin for managing functions whose output type is dependent |
|
# on the literal value of some sort of signature (e.g. `einsum` and `vectorize`) |
|
class vectorize: |
|
pyfunc: Callable[..., Any] |
|
cache: bool |
|
signature: None | str |
|
otypes: None | str |
|
excluded: set[int | str] |
|
__doc__: None | str |
|
def __init__( |
|
self, |
|
pyfunc: Callable[..., Any], |
|
otypes: None | str | Iterable[DTypeLike] = ..., |
|
doc: None | str = ..., |
|
excluded: None | Iterable[int | str] = ..., |
|
cache: bool = ..., |
|
signature: None | str = ..., |
|
) -> None: ... |
|
def __call__(self, *args: Any, **kwargs: Any) -> Any: ... |
|
|
|
class poly1d: |
|
@property |
|
def variable(self) -> str: ... |
|
@property |
|
def order(self) -> int: ... |
|
@property |
|
def o(self) -> int: ... |
|
@property |
|
def roots(self) -> NDArray[Any]: ... |
|
@property |
|
def r(self) -> NDArray[Any]: ... |
|
|
|
@property |
|
def coeffs(self) -> NDArray[Any]: ... |
|
@coeffs.setter |
|
def coeffs(self, value: NDArray[Any]) -> None: ... |
|
|
|
@property |
|
def c(self) -> NDArray[Any]: ... |
|
@c.setter |
|
def c(self, value: NDArray[Any]) -> None: ... |
|
|
|
@property |
|
def coef(self) -> NDArray[Any]: ... |
|
@coef.setter |
|
def coef(self, value: NDArray[Any]) -> None: ... |
|
|
|
@property |
|
def coefficients(self) -> NDArray[Any]: ... |
|
@coefficients.setter |
|
def coefficients(self, value: NDArray[Any]) -> None: ... |
|
|
|
__hash__: ClassVar[None] # type: ignore |
|
|
|
@overload |
|
def __array__(self, t: None = ...) -> NDArray[Any]: ... |
|
@overload |
|
def __array__(self, t: _DType) -> ndarray[Any, _DType]: ... |
|
|
|
@overload |
|
def __call__(self, val: _ScalarLike_co) -> Any: ... |
|
@overload |
|
def __call__(self, val: poly1d) -> poly1d: ... |
|
@overload |
|
def __call__(self, val: ArrayLike) -> NDArray[Any]: ... |
|
|
|
def __init__( |
|
self, |
|
c_or_r: ArrayLike, |
|
r: bool = ..., |
|
variable: None | str = ..., |
|
) -> None: ... |
|
def __len__(self) -> int: ... |
|
def __neg__(self) -> poly1d: ... |
|
def __pos__(self) -> poly1d: ... |
|
def __mul__(self, other: ArrayLike) -> poly1d: ... |
|
def __rmul__(self, other: ArrayLike) -> poly1d: ... |
|
def __add__(self, other: ArrayLike) -> poly1d: ... |
|
def __radd__(self, other: ArrayLike) -> poly1d: ... |
|
def __pow__(self, val: _FloatLike_co) -> poly1d: ... # Integral floats are accepted |
|
def __sub__(self, other: ArrayLike) -> poly1d: ... |
|
def __rsub__(self, other: ArrayLike) -> poly1d: ... |
|
def __div__(self, other: ArrayLike) -> poly1d: ... |
|
def __truediv__(self, other: ArrayLike) -> poly1d: ... |
|
def __rdiv__(self, other: ArrayLike) -> poly1d: ... |
|
def __rtruediv__(self, other: ArrayLike) -> poly1d: ... |
|
def __getitem__(self, val: int) -> Any: ... |
|
def __setitem__(self, key: int, val: Any) -> None: ... |
|
def __iter__(self) -> Iterator[Any]: ... |
|
def deriv(self, m: SupportsInt | SupportsIndex = ...) -> poly1d: ... |
|
def integ( |
|
self, |
|
m: SupportsInt | SupportsIndex = ..., |
|
k: None | _ArrayLikeComplex_co | _ArrayLikeObject_co = ..., |
|
) -> poly1d: ... |
|
|
|
class matrix(ndarray[_ShapeType, _DType_co]): |
|
__array_priority__: ClassVar[float] |
|
def __new__( |
|
subtype, |
|
data: ArrayLike, |
|
dtype: DTypeLike = ..., |
|
copy: bool = ..., |
|
) -> matrix[Any, Any]: ... |
|
def __array_finalize__(self, obj: object) -> None: ... |
|
|
|
@overload |
|
def __getitem__(self, key: ( |
|
SupportsIndex |
|
| _ArrayLikeInt_co |
|
| tuple[SupportsIndex | _ArrayLikeInt_co, ...] |
|
)) -> Any: ... |
|
@overload |
|
def __getitem__(self, key: ( |
|
None |
|
| slice |
|
| ellipsis |
|
| SupportsIndex |
|
| _ArrayLikeInt_co |
|
| tuple[None | slice | ellipsis | _ArrayLikeInt_co | SupportsIndex, ...] |
|
)) -> matrix[Any, _DType_co]: ... |
|
@overload |
|
def __getitem__(self: NDArray[void], key: str) -> matrix[Any, dtype[Any]]: ... |
|
@overload |
|
def __getitem__(self: NDArray[void], key: list[str]) -> matrix[_ShapeType, dtype[void]]: ... |
|
|
|
def __mul__(self, other: ArrayLike) -> matrix[Any, Any]: ... |
|
def __rmul__(self, other: ArrayLike) -> matrix[Any, Any]: ... |
|
def __imul__(self, other: ArrayLike) -> matrix[_ShapeType, _DType_co]: ... |
|
def __pow__(self, other: ArrayLike) -> matrix[Any, Any]: ... |
|
def __ipow__(self, other: ArrayLike) -> matrix[_ShapeType, _DType_co]: ... |
|
|
|
@overload |
|
def sum(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ... |
|
@overload |
|
def sum(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[Any, Any]: ... |
|
@overload |
|
def sum(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def mean(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ... |
|
@overload |
|
def mean(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[Any, Any]: ... |
|
@overload |
|
def mean(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def std(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> Any: ... |
|
@overload |
|
def std(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> matrix[Any, Any]: ... |
|
@overload |
|
def std(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ..., ddof: float = ...) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def var(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> Any: ... |
|
@overload |
|
def var(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> matrix[Any, Any]: ... |
|
@overload |
|
def var(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ..., ddof: float = ...) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def prod(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ... |
|
@overload |
|
def prod(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[Any, Any]: ... |
|
@overload |
|
def prod(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def any(self, axis: None = ..., out: None = ...) -> bool_: ... |
|
@overload |
|
def any(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[bool_]]: ... |
|
@overload |
|
def any(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def all(self, axis: None = ..., out: None = ...) -> bool_: ... |
|
@overload |
|
def all(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[bool_]]: ... |
|
@overload |
|
def all(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def max(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> _ScalarType: ... |
|
@overload |
|
def max(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, _DType_co]: ... |
|
@overload |
|
def max(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def min(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> _ScalarType: ... |
|
@overload |
|
def min(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, _DType_co]: ... |
|
@overload |
|
def min(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def argmax(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> intp: ... |
|
@overload |
|
def argmax(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[intp]]: ... |
|
@overload |
|
def argmax(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def argmin(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> intp: ... |
|
@overload |
|
def argmin(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, dtype[intp]]: ... |
|
@overload |
|
def argmin(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... |
|
|
|
@overload |
|
def ptp(self: NDArray[_ScalarType], axis: None = ..., out: None = ...) -> _ScalarType: ... |
|
@overload |
|
def ptp(self, axis: _ShapeLike, out: None = ...) -> matrix[Any, _DType_co]: ... |
|
@overload |
|
def ptp(self, axis: None | _ShapeLike = ..., out: _NdArraySubClass = ...) -> _NdArraySubClass: ... |
|
|
|
def squeeze(self, axis: None | _ShapeLike = ...) -> matrix[Any, _DType_co]: ... |
|
def tolist(self: matrix[Any, dtype[_SupportsItem[_T]]]) -> list[list[_T]]: ... # type: ignore[typevar] |
|
def ravel(self, order: _OrderKACF = ...) -> matrix[Any, _DType_co]: ... |
|
def flatten(self, order: _OrderKACF = ...) -> matrix[Any, _DType_co]: ... |
|
|
|
@property |
|
def T(self) -> matrix[Any, _DType_co]: ... |
|
@property |
|
def I(self) -> matrix[Any, Any]: ... |
|
@property |
|
def A(self) -> ndarray[_ShapeType, _DType_co]: ... |
|
@property |
|
def A1(self) -> ndarray[Any, _DType_co]: ... |
|
@property |
|
def H(self) -> matrix[Any, _DType_co]: ... |
|
def getT(self) -> matrix[Any, _DType_co]: ... |
|
def getI(self) -> matrix[Any, Any]: ... |
|
def getA(self) -> ndarray[_ShapeType, _DType_co]: ... |
|
def getA1(self) -> ndarray[Any, _DType_co]: ... |
|
def getH(self) -> matrix[Any, _DType_co]: ... |
|
|
|
_CharType = TypeVar("_CharType", str_, bytes_) |
|
_CharDType = TypeVar("_CharDType", dtype[str_], dtype[bytes_]) |
|
_CharArray = chararray[Any, dtype[_CharType]] |
|
|
|
class chararray(ndarray[_ShapeType, _CharDType]): |
|
@overload |
|
def __new__( |
|
subtype, |
|
shape: _ShapeLike, |
|
itemsize: SupportsIndex | SupportsInt = ..., |
|
unicode: L[False] = ..., |
|
buffer: _SupportsBuffer = ..., |
|
offset: SupportsIndex = ..., |
|
strides: _ShapeLike = ..., |
|
order: _OrderKACF = ..., |
|
) -> chararray[Any, dtype[bytes_]]: ... |
|
@overload |
|
def __new__( |
|
subtype, |
|
shape: _ShapeLike, |
|
itemsize: SupportsIndex | SupportsInt = ..., |
|
unicode: L[True] = ..., |
|
buffer: _SupportsBuffer = ..., |
|
offset: SupportsIndex = ..., |
|
strides: _ShapeLike = ..., |
|
order: _OrderKACF = ..., |
|
) -> chararray[Any, dtype[str_]]: ... |
|
|
|
def __array_finalize__(self, obj: object) -> None: ... |
|
def __mul__(self, other: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ... |
|
def __rmul__(self, other: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ... |
|
def __mod__(self, i: Any) -> chararray[Any, _CharDType]: ... |
|
|
|
@overload |
|
def __eq__( |
|
self: _CharArray[str_], |
|
other: _ArrayLikeStr_co, |
|
) -> NDArray[bool_]: ... |
|
@overload |
|
def __eq__( |
|
self: _CharArray[bytes_], |
|
other: _ArrayLikeBytes_co, |
|
) -> NDArray[bool_]: ... |
|
|
|
@overload |
|
def __ne__( |
|
self: _CharArray[str_], |
|
other: _ArrayLikeStr_co, |
|
) -> NDArray[bool_]: ... |
|
@overload |
|
def __ne__( |
|
self: _CharArray[bytes_], |
|
other: _ArrayLikeBytes_co, |
|
) -> NDArray[bool_]: ... |
|
|
|
@overload |
|
def __ge__( |
|
self: _CharArray[str_], |
|
other: _ArrayLikeStr_co, |
|
) -> NDArray[bool_]: ... |
|
@overload |
|
def __ge__( |
|
self: _CharArray[bytes_], |
|
other: _ArrayLikeBytes_co, |
|
) -> NDArray[bool_]: ... |
|
|
|
@overload |
|
def __le__( |
|
self: _CharArray[str_], |
|
other: _ArrayLikeStr_co, |
|
) -> NDArray[bool_]: ... |
|
@overload |
|
def __le__( |
|
self: _CharArray[bytes_], |
|
other: _ArrayLikeBytes_co, |
|
) -> NDArray[bool_]: ... |
|
|
|
@overload |
|
def __gt__( |
|
self: _CharArray[str_], |
|
other: _ArrayLikeStr_co, |
|
) -> NDArray[bool_]: ... |
|
@overload |
|
def __gt__( |
|
self: _CharArray[bytes_], |
|
other: _ArrayLikeBytes_co, |
|
) -> NDArray[bool_]: ... |
|
|
|
@overload |
|
def __lt__( |
|
self: _CharArray[str_], |
|
other: _ArrayLikeStr_co, |
|
) -> NDArray[bool_]: ... |
|
@overload |
|
def __lt__( |
|
self: _CharArray[bytes_], |
|
other: _ArrayLikeBytes_co, |
|
) -> NDArray[bool_]: ... |
|
|
|
@overload |
|
def __add__( |
|
self: _CharArray[str_], |
|
other: _ArrayLikeStr_co, |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def __add__( |
|
self: _CharArray[bytes_], |
|
other: _ArrayLikeBytes_co, |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def __radd__( |
|
self: _CharArray[str_], |
|
other: _ArrayLikeStr_co, |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def __radd__( |
|
self: _CharArray[bytes_], |
|
other: _ArrayLikeBytes_co, |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def center( |
|
self: _CharArray[str_], |
|
width: _ArrayLikeInt_co, |
|
fillchar: _ArrayLikeStr_co = ..., |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def center( |
|
self: _CharArray[bytes_], |
|
width: _ArrayLikeInt_co, |
|
fillchar: _ArrayLikeBytes_co = ..., |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def count( |
|
self: _CharArray[str_], |
|
sub: _ArrayLikeStr_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[int_]: ... |
|
@overload |
|
def count( |
|
self: _CharArray[bytes_], |
|
sub: _ArrayLikeBytes_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[int_]: ... |
|
|
|
def decode( |
|
self: _CharArray[bytes_], |
|
encoding: None | str = ..., |
|
errors: None | str = ..., |
|
) -> _CharArray[str_]: ... |
|
|
|
def encode( |
|
self: _CharArray[str_], |
|
encoding: None | str = ..., |
|
errors: None | str = ..., |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def endswith( |
|
self: _CharArray[str_], |
|
suffix: _ArrayLikeStr_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[bool_]: ... |
|
@overload |
|
def endswith( |
|
self: _CharArray[bytes_], |
|
suffix: _ArrayLikeBytes_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[bool_]: ... |
|
|
|
def expandtabs( |
|
self, |
|
tabsize: _ArrayLikeInt_co = ..., |
|
) -> chararray[Any, _CharDType]: ... |
|
|
|
@overload |
|
def find( |
|
self: _CharArray[str_], |
|
sub: _ArrayLikeStr_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[int_]: ... |
|
@overload |
|
def find( |
|
self: _CharArray[bytes_], |
|
sub: _ArrayLikeBytes_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[int_]: ... |
|
|
|
@overload |
|
def index( |
|
self: _CharArray[str_], |
|
sub: _ArrayLikeStr_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[int_]: ... |
|
@overload |
|
def index( |
|
self: _CharArray[bytes_], |
|
sub: _ArrayLikeBytes_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[int_]: ... |
|
|
|
@overload |
|
def join( |
|
self: _CharArray[str_], |
|
seq: _ArrayLikeStr_co, |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def join( |
|
self: _CharArray[bytes_], |
|
seq: _ArrayLikeBytes_co, |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def ljust( |
|
self: _CharArray[str_], |
|
width: _ArrayLikeInt_co, |
|
fillchar: _ArrayLikeStr_co = ..., |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def ljust( |
|
self: _CharArray[bytes_], |
|
width: _ArrayLikeInt_co, |
|
fillchar: _ArrayLikeBytes_co = ..., |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def lstrip( |
|
self: _CharArray[str_], |
|
chars: None | _ArrayLikeStr_co = ..., |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def lstrip( |
|
self: _CharArray[bytes_], |
|
chars: None | _ArrayLikeBytes_co = ..., |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def partition( |
|
self: _CharArray[str_], |
|
sep: _ArrayLikeStr_co, |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def partition( |
|
self: _CharArray[bytes_], |
|
sep: _ArrayLikeBytes_co, |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def replace( |
|
self: _CharArray[str_], |
|
old: _ArrayLikeStr_co, |
|
new: _ArrayLikeStr_co, |
|
count: None | _ArrayLikeInt_co = ..., |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def replace( |
|
self: _CharArray[bytes_], |
|
old: _ArrayLikeBytes_co, |
|
new: _ArrayLikeBytes_co, |
|
count: None | _ArrayLikeInt_co = ..., |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def rfind( |
|
self: _CharArray[str_], |
|
sub: _ArrayLikeStr_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[int_]: ... |
|
@overload |
|
def rfind( |
|
self: _CharArray[bytes_], |
|
sub: _ArrayLikeBytes_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[int_]: ... |
|
|
|
@overload |
|
def rindex( |
|
self: _CharArray[str_], |
|
sub: _ArrayLikeStr_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[int_]: ... |
|
@overload |
|
def rindex( |
|
self: _CharArray[bytes_], |
|
sub: _ArrayLikeBytes_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[int_]: ... |
|
|
|
@overload |
|
def rjust( |
|
self: _CharArray[str_], |
|
width: _ArrayLikeInt_co, |
|
fillchar: _ArrayLikeStr_co = ..., |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def rjust( |
|
self: _CharArray[bytes_], |
|
width: _ArrayLikeInt_co, |
|
fillchar: _ArrayLikeBytes_co = ..., |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def rpartition( |
|
self: _CharArray[str_], |
|
sep: _ArrayLikeStr_co, |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def rpartition( |
|
self: _CharArray[bytes_], |
|
sep: _ArrayLikeBytes_co, |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def rsplit( |
|
self: _CharArray[str_], |
|
sep: None | _ArrayLikeStr_co = ..., |
|
maxsplit: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[object_]: ... |
|
@overload |
|
def rsplit( |
|
self: _CharArray[bytes_], |
|
sep: None | _ArrayLikeBytes_co = ..., |
|
maxsplit: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def rstrip( |
|
self: _CharArray[str_], |
|
chars: None | _ArrayLikeStr_co = ..., |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def rstrip( |
|
self: _CharArray[bytes_], |
|
chars: None | _ArrayLikeBytes_co = ..., |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def split( |
|
self: _CharArray[str_], |
|
sep: None | _ArrayLikeStr_co = ..., |
|
maxsplit: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[object_]: ... |
|
@overload |
|
def split( |
|
self: _CharArray[bytes_], |
|
sep: None | _ArrayLikeBytes_co = ..., |
|
maxsplit: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[object_]: ... |
|
|
|
def splitlines(self, keepends: None | _ArrayLikeBool_co = ...) -> NDArray[object_]: ... |
|
|
|
@overload |
|
def startswith( |
|
self: _CharArray[str_], |
|
prefix: _ArrayLikeStr_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[bool_]: ... |
|
@overload |
|
def startswith( |
|
self: _CharArray[bytes_], |
|
prefix: _ArrayLikeBytes_co, |
|
start: _ArrayLikeInt_co = ..., |
|
end: None | _ArrayLikeInt_co = ..., |
|
) -> NDArray[bool_]: ... |
|
|
|
@overload |
|
def strip( |
|
self: _CharArray[str_], |
|
chars: None | _ArrayLikeStr_co = ..., |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def strip( |
|
self: _CharArray[bytes_], |
|
chars: None | _ArrayLikeBytes_co = ..., |
|
) -> _CharArray[bytes_]: ... |
|
|
|
@overload |
|
def translate( |
|
self: _CharArray[str_], |
|
table: _ArrayLikeStr_co, |
|
deletechars: None | _ArrayLikeStr_co = ..., |
|
) -> _CharArray[str_]: ... |
|
@overload |
|
def translate( |
|
self: _CharArray[bytes_], |
|
table: _ArrayLikeBytes_co, |
|
deletechars: None | _ArrayLikeBytes_co = ..., |
|
) -> _CharArray[bytes_]: ... |
|
|
|
def zfill(self, width: _ArrayLikeInt_co) -> chararray[Any, _CharDType]: ... |
|
def capitalize(self) -> chararray[_ShapeType, _CharDType]: ... |
|
def title(self) -> chararray[_ShapeType, _CharDType]: ... |
|
def swapcase(self) -> chararray[_ShapeType, _CharDType]: ... |
|
def lower(self) -> chararray[_ShapeType, _CharDType]: ... |
|
def upper(self) -> chararray[_ShapeType, _CharDType]: ... |
|
def isalnum(self) -> ndarray[_ShapeType, dtype[bool_]]: ... |
|
def isalpha(self) -> ndarray[_ShapeType, dtype[bool_]]: ... |
|
def isdigit(self) -> ndarray[_ShapeType, dtype[bool_]]: ... |
|
def islower(self) -> ndarray[_ShapeType, dtype[bool_]]: ... |
|
def isspace(self) -> ndarray[_ShapeType, dtype[bool_]]: ... |
|
def istitle(self) -> ndarray[_ShapeType, dtype[bool_]]: ... |
|
def isupper(self) -> ndarray[_ShapeType, dtype[bool_]]: ... |
|
def isnumeric(self) -> ndarray[_ShapeType, dtype[bool_]]: ... |
|
def isdecimal(self) -> ndarray[_ShapeType, dtype[bool_]]: ... |
|
|
|
# NOTE: Deprecated |
|
# class MachAr: ... |
|
|
|
class _SupportsDLPack(Protocol[_T_contra]): |
|
def __dlpack__(self, *, stream: None | _T_contra = ...) -> _PyCapsule: ... |
|
|
|
def from_dlpack(obj: _SupportsDLPack[None], /) -> NDArray[Any]: ... |
|
|