|
__all__ = ['matrix', 'bmat', 'mat', 'asmatrix'] |
|
|
|
import sys |
|
import warnings |
|
import ast |
|
|
|
from .._utils import set_module |
|
import numpy.core.numeric as N |
|
from numpy.core.numeric import concatenate, isscalar |
|
|
|
|
|
from numpy.linalg import matrix_power |
|
|
|
|
|
def _convert_from_string(data): |
|
for char in '[]': |
|
data = data.replace(char, '') |
|
|
|
rows = data.split(';') |
|
newdata = [] |
|
count = 0 |
|
for row in rows: |
|
trow = row.split(',') |
|
newrow = [] |
|
for col in trow: |
|
temp = col.split() |
|
newrow.extend(map(ast.literal_eval, temp)) |
|
if count == 0: |
|
Ncols = len(newrow) |
|
elif len(newrow) != Ncols: |
|
raise ValueError("Rows not the same size.") |
|
count += 1 |
|
newdata.append(newrow) |
|
return newdata |
|
|
|
|
|
@set_module('numpy') |
|
def asmatrix(data, dtype=None): |
|
""" |
|
Interpret the input as a matrix. |
|
|
|
Unlike `matrix`, `asmatrix` does not make a copy if the input is already |
|
a matrix or an ndarray. Equivalent to ``matrix(data, copy=False)``. |
|
|
|
Parameters |
|
---------- |
|
data : array_like |
|
Input data. |
|
dtype : data-type |
|
Data-type of the output matrix. |
|
|
|
Returns |
|
------- |
|
mat : matrix |
|
`data` interpreted as a matrix. |
|
|
|
Examples |
|
-------- |
|
>>> x = np.array([[1, 2], [3, 4]]) |
|
|
|
>>> m = np.asmatrix(x) |
|
|
|
>>> x[0,0] = 5 |
|
|
|
>>> m |
|
matrix([[5, 2], |
|
[3, 4]]) |
|
|
|
""" |
|
return matrix(data, dtype=dtype, copy=False) |
|
|
|
|
|
@set_module('numpy') |
|
class matrix(N.ndarray): |
|
""" |
|
matrix(data, dtype=None, copy=True) |
|
|
|
.. note:: It is no longer recommended to use this class, even for linear |
|
algebra. Instead use regular arrays. The class may be removed |
|
in the future. |
|
|
|
Returns a matrix from an array-like object, or from a string of data. |
|
A matrix is a specialized 2-D array that retains its 2-D nature |
|
through operations. It has certain special operators, such as ``*`` |
|
(matrix multiplication) and ``**`` (matrix power). |
|
|
|
Parameters |
|
---------- |
|
data : array_like or string |
|
If `data` is a string, it is interpreted as a matrix with commas |
|
or spaces separating columns, and semicolons separating rows. |
|
dtype : data-type |
|
Data-type of the output matrix. |
|
copy : bool |
|
If `data` is already an `ndarray`, then this flag determines |
|
whether the data is copied (the default), or whether a view is |
|
constructed. |
|
|
|
See Also |
|
-------- |
|
array |
|
|
|
Examples |
|
-------- |
|
>>> a = np.matrix('1 2; 3 4') |
|
>>> a |
|
matrix([[1, 2], |
|
[3, 4]]) |
|
|
|
>>> np.matrix([[1, 2], [3, 4]]) |
|
matrix([[1, 2], |
|
[3, 4]]) |
|
|
|
""" |
|
__array_priority__ = 10.0 |
|
def __new__(subtype, data, dtype=None, copy=True): |
|
warnings.warn('the matrix subclass is not the recommended way to ' |
|
'represent matrices or deal with linear algebra (see ' |
|
'https://docs.scipy.org/doc/numpy/user/' |
|
'numpy-for-matlab-users.html). ' |
|
'Please adjust your code to use regular ndarray.', |
|
PendingDeprecationWarning, stacklevel=2) |
|
if isinstance(data, matrix): |
|
dtype2 = data.dtype |
|
if (dtype is None): |
|
dtype = dtype2 |
|
if (dtype2 == dtype) and (not copy): |
|
return data |
|
return data.astype(dtype) |
|
|
|
if isinstance(data, N.ndarray): |
|
if dtype is None: |
|
intype = data.dtype |
|
else: |
|
intype = N.dtype(dtype) |
|
new = data.view(subtype) |
|
if intype != data.dtype: |
|
return new.astype(intype) |
|
if copy: return new.copy() |
|
else: return new |
|
|
|
if isinstance(data, str): |
|
data = _convert_from_string(data) |
|
|
|
|
|
arr = N.array(data, dtype=dtype, copy=copy) |
|
ndim = arr.ndim |
|
shape = arr.shape |
|
if (ndim > 2): |
|
raise ValueError("matrix must be 2-dimensional") |
|
elif ndim == 0: |
|
shape = (1, 1) |
|
elif ndim == 1: |
|
shape = (1, shape[0]) |
|
|
|
order = 'C' |
|
if (ndim == 2) and arr.flags.fortran: |
|
order = 'F' |
|
|
|
if not (order or arr.flags.contiguous): |
|
arr = arr.copy() |
|
|
|
ret = N.ndarray.__new__(subtype, shape, arr.dtype, |
|
buffer=arr, |
|
order=order) |
|
return ret |
|
|
|
def __array_finalize__(self, obj): |
|
self._getitem = False |
|
if (isinstance(obj, matrix) and obj._getitem): return |
|
ndim = self.ndim |
|
if (ndim == 2): |
|
return |
|
if (ndim > 2): |
|
newshape = tuple([x for x in self.shape if x > 1]) |
|
ndim = len(newshape) |
|
if ndim == 2: |
|
self.shape = newshape |
|
return |
|
elif (ndim > 2): |
|
raise ValueError("shape too large to be a matrix.") |
|
else: |
|
newshape = self.shape |
|
if ndim == 0: |
|
self.shape = (1, 1) |
|
elif ndim == 1: |
|
self.shape = (1, newshape[0]) |
|
return |
|
|
|
def __getitem__(self, index): |
|
self._getitem = True |
|
|
|
try: |
|
out = N.ndarray.__getitem__(self, index) |
|
finally: |
|
self._getitem = False |
|
|
|
if not isinstance(out, N.ndarray): |
|
return out |
|
|
|
if out.ndim == 0: |
|
return out[()] |
|
if out.ndim == 1: |
|
sh = out.shape[0] |
|
|
|
try: |
|
n = len(index) |
|
except Exception: |
|
n = 0 |
|
if n > 1 and isscalar(index[1]): |
|
out.shape = (sh, 1) |
|
else: |
|
out.shape = (1, sh) |
|
return out |
|
|
|
def __mul__(self, other): |
|
if isinstance(other, (N.ndarray, list, tuple)) : |
|
|
|
return N.dot(self, asmatrix(other)) |
|
if isscalar(other) or not hasattr(other, '__rmul__') : |
|
return N.dot(self, other) |
|
return NotImplemented |
|
|
|
def __rmul__(self, other): |
|
return N.dot(other, self) |
|
|
|
def __imul__(self, other): |
|
self[:] = self * other |
|
return self |
|
|
|
def __pow__(self, other): |
|
return matrix_power(self, other) |
|
|
|
def __ipow__(self, other): |
|
self[:] = self ** other |
|
return self |
|
|
|
def __rpow__(self, other): |
|
return NotImplemented |
|
|
|
def _align(self, axis): |
|
"""A convenience function for operations that need to preserve axis |
|
orientation. |
|
""" |
|
if axis is None: |
|
return self[0, 0] |
|
elif axis==0: |
|
return self |
|
elif axis==1: |
|
return self.transpose() |
|
else: |
|
raise ValueError("unsupported axis") |
|
|
|
def _collapse(self, axis): |
|
"""A convenience function for operations that want to collapse |
|
to a scalar like _align, but are using keepdims=True |
|
""" |
|
if axis is None: |
|
return self[0, 0] |
|
else: |
|
return self |
|
|
|
|
|
|
|
def tolist(self): |
|
""" |
|
Return the matrix as a (possibly nested) list. |
|
|
|
See `ndarray.tolist` for full documentation. |
|
|
|
See Also |
|
-------- |
|
ndarray.tolist |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix(np.arange(12).reshape((3,4))); x |
|
matrix([[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7], |
|
[ 8, 9, 10, 11]]) |
|
>>> x.tolist() |
|
[[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] |
|
|
|
""" |
|
return self.__array__().tolist() |
|
|
|
|
|
def sum(self, axis=None, dtype=None, out=None): |
|
""" |
|
Returns the sum of the matrix elements, along the given axis. |
|
|
|
Refer to `numpy.sum` for full documentation. |
|
|
|
See Also |
|
-------- |
|
numpy.sum |
|
|
|
Notes |
|
----- |
|
This is the same as `ndarray.sum`, except that where an `ndarray` would |
|
be returned, a `matrix` object is returned instead. |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix([[1, 2], [4, 3]]) |
|
>>> x.sum() |
|
10 |
|
>>> x.sum(axis=1) |
|
matrix([[3], |
|
[7]]) |
|
>>> x.sum(axis=1, dtype='float') |
|
matrix([[3.], |
|
[7.]]) |
|
>>> out = np.zeros((2, 1), dtype='float') |
|
>>> x.sum(axis=1, dtype='float', out=np.asmatrix(out)) |
|
matrix([[3.], |
|
[7.]]) |
|
|
|
""" |
|
return N.ndarray.sum(self, axis, dtype, out, keepdims=True)._collapse(axis) |
|
|
|
|
|
|
|
def squeeze(self, axis=None): |
|
""" |
|
Return a possibly reshaped matrix. |
|
|
|
Refer to `numpy.squeeze` for more documentation. |
|
|
|
Parameters |
|
---------- |
|
axis : None or int or tuple of ints, optional |
|
Selects a subset of the axes of length one in the shape. |
|
If an axis is selected with shape entry greater than one, |
|
an error is raised. |
|
|
|
Returns |
|
------- |
|
squeezed : matrix |
|
The matrix, but as a (1, N) matrix if it had shape (N, 1). |
|
|
|
See Also |
|
-------- |
|
numpy.squeeze : related function |
|
|
|
Notes |
|
----- |
|
If `m` has a single column then that column is returned |
|
as the single row of a matrix. Otherwise `m` is returned. |
|
The returned matrix is always either `m` itself or a view into `m`. |
|
Supplying an axis keyword argument will not affect the returned matrix |
|
but it may cause an error to be raised. |
|
|
|
Examples |
|
-------- |
|
>>> c = np.matrix([[1], [2]]) |
|
>>> c |
|
matrix([[1], |
|
[2]]) |
|
>>> c.squeeze() |
|
matrix([[1, 2]]) |
|
>>> r = c.T |
|
>>> r |
|
matrix([[1, 2]]) |
|
>>> r.squeeze() |
|
matrix([[1, 2]]) |
|
>>> m = np.matrix([[1, 2], [3, 4]]) |
|
>>> m.squeeze() |
|
matrix([[1, 2], |
|
[3, 4]]) |
|
|
|
""" |
|
return N.ndarray.squeeze(self, axis=axis) |
|
|
|
|
|
|
|
def flatten(self, order='C'): |
|
""" |
|
Return a flattened copy of the matrix. |
|
|
|
All `N` elements of the matrix are placed into a single row. |
|
|
|
Parameters |
|
---------- |
|
order : {'C', 'F', 'A', 'K'}, optional |
|
'C' means to flatten in row-major (C-style) order. 'F' means to |
|
flatten in column-major (Fortran-style) order. 'A' means to |
|
flatten in column-major order if `m` is Fortran *contiguous* in |
|
memory, row-major order otherwise. 'K' means to flatten `m` in |
|
the order the elements occur in memory. The default is 'C'. |
|
|
|
Returns |
|
------- |
|
y : matrix |
|
A copy of the matrix, flattened to a `(1, N)` matrix where `N` |
|
is the number of elements in the original matrix. |
|
|
|
See Also |
|
-------- |
|
ravel : Return a flattened array. |
|
flat : A 1-D flat iterator over the matrix. |
|
|
|
Examples |
|
-------- |
|
>>> m = np.matrix([[1,2], [3,4]]) |
|
>>> m.flatten() |
|
matrix([[1, 2, 3, 4]]) |
|
>>> m.flatten('F') |
|
matrix([[1, 3, 2, 4]]) |
|
|
|
""" |
|
return N.ndarray.flatten(self, order=order) |
|
|
|
def mean(self, axis=None, dtype=None, out=None): |
|
""" |
|
Returns the average of the matrix elements along the given axis. |
|
|
|
Refer to `numpy.mean` for full documentation. |
|
|
|
See Also |
|
-------- |
|
numpy.mean |
|
|
|
Notes |
|
----- |
|
Same as `ndarray.mean` except that, where that returns an `ndarray`, |
|
this returns a `matrix` object. |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix(np.arange(12).reshape((3, 4))) |
|
>>> x |
|
matrix([[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7], |
|
[ 8, 9, 10, 11]]) |
|
>>> x.mean() |
|
5.5 |
|
>>> x.mean(0) |
|
matrix([[4., 5., 6., 7.]]) |
|
>>> x.mean(1) |
|
matrix([[ 1.5], |
|
[ 5.5], |
|
[ 9.5]]) |
|
|
|
""" |
|
return N.ndarray.mean(self, axis, dtype, out, keepdims=True)._collapse(axis) |
|
|
|
def std(self, axis=None, dtype=None, out=None, ddof=0): |
|
""" |
|
Return the standard deviation of the array elements along the given axis. |
|
|
|
Refer to `numpy.std` for full documentation. |
|
|
|
See Also |
|
-------- |
|
numpy.std |
|
|
|
Notes |
|
----- |
|
This is the same as `ndarray.std`, except that where an `ndarray` would |
|
be returned, a `matrix` object is returned instead. |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix(np.arange(12).reshape((3, 4))) |
|
>>> x |
|
matrix([[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7], |
|
[ 8, 9, 10, 11]]) |
|
>>> x.std() |
|
3.4520525295346629 # may vary |
|
>>> x.std(0) |
|
matrix([[ 3.26598632, 3.26598632, 3.26598632, 3.26598632]]) # may vary |
|
>>> x.std(1) |
|
matrix([[ 1.11803399], |
|
[ 1.11803399], |
|
[ 1.11803399]]) |
|
|
|
""" |
|
return N.ndarray.std(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis) |
|
|
|
def var(self, axis=None, dtype=None, out=None, ddof=0): |
|
""" |
|
Returns the variance of the matrix elements, along the given axis. |
|
|
|
Refer to `numpy.var` for full documentation. |
|
|
|
See Also |
|
-------- |
|
numpy.var |
|
|
|
Notes |
|
----- |
|
This is the same as `ndarray.var`, except that where an `ndarray` would |
|
be returned, a `matrix` object is returned instead. |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix(np.arange(12).reshape((3, 4))) |
|
>>> x |
|
matrix([[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7], |
|
[ 8, 9, 10, 11]]) |
|
>>> x.var() |
|
11.916666666666666 |
|
>>> x.var(0) |
|
matrix([[ 10.66666667, 10.66666667, 10.66666667, 10.66666667]]) # may vary |
|
>>> x.var(1) |
|
matrix([[1.25], |
|
[1.25], |
|
[1.25]]) |
|
|
|
""" |
|
return N.ndarray.var(self, axis, dtype, out, ddof, keepdims=True)._collapse(axis) |
|
|
|
def prod(self, axis=None, dtype=None, out=None): |
|
""" |
|
Return the product of the array elements over the given axis. |
|
|
|
Refer to `prod` for full documentation. |
|
|
|
See Also |
|
-------- |
|
prod, ndarray.prod |
|
|
|
Notes |
|
----- |
|
Same as `ndarray.prod`, except, where that returns an `ndarray`, this |
|
returns a `matrix` object instead. |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix(np.arange(12).reshape((3,4))); x |
|
matrix([[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7], |
|
[ 8, 9, 10, 11]]) |
|
>>> x.prod() |
|
0 |
|
>>> x.prod(0) |
|
matrix([[ 0, 45, 120, 231]]) |
|
>>> x.prod(1) |
|
matrix([[ 0], |
|
[ 840], |
|
[7920]]) |
|
|
|
""" |
|
return N.ndarray.prod(self, axis, dtype, out, keepdims=True)._collapse(axis) |
|
|
|
def any(self, axis=None, out=None): |
|
""" |
|
Test whether any array element along a given axis evaluates to True. |
|
|
|
Refer to `numpy.any` for full documentation. |
|
|
|
Parameters |
|
---------- |
|
axis : int, optional |
|
Axis along which logical OR is performed |
|
out : ndarray, optional |
|
Output to existing array instead of creating new one, must have |
|
same shape as expected output |
|
|
|
Returns |
|
------- |
|
any : bool, ndarray |
|
Returns a single bool if `axis` is ``None``; otherwise, |
|
returns `ndarray` |
|
|
|
""" |
|
return N.ndarray.any(self, axis, out, keepdims=True)._collapse(axis) |
|
|
|
def all(self, axis=None, out=None): |
|
""" |
|
Test whether all matrix elements along a given axis evaluate to True. |
|
|
|
Parameters |
|
---------- |
|
See `numpy.all` for complete descriptions |
|
|
|
See Also |
|
-------- |
|
numpy.all |
|
|
|
Notes |
|
----- |
|
This is the same as `ndarray.all`, but it returns a `matrix` object. |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix(np.arange(12).reshape((3,4))); x |
|
matrix([[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7], |
|
[ 8, 9, 10, 11]]) |
|
>>> y = x[0]; y |
|
matrix([[0, 1, 2, 3]]) |
|
>>> (x == y) |
|
matrix([[ True, True, True, True], |
|
[False, False, False, False], |
|
[False, False, False, False]]) |
|
>>> (x == y).all() |
|
False |
|
>>> (x == y).all(0) |
|
matrix([[False, False, False, False]]) |
|
>>> (x == y).all(1) |
|
matrix([[ True], |
|
[False], |
|
[False]]) |
|
|
|
""" |
|
return N.ndarray.all(self, axis, out, keepdims=True)._collapse(axis) |
|
|
|
def max(self, axis=None, out=None): |
|
""" |
|
Return the maximum value along an axis. |
|
|
|
Parameters |
|
---------- |
|
See `amax` for complete descriptions |
|
|
|
See Also |
|
-------- |
|
amax, ndarray.max |
|
|
|
Notes |
|
----- |
|
This is the same as `ndarray.max`, but returns a `matrix` object |
|
where `ndarray.max` would return an ndarray. |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix(np.arange(12).reshape((3,4))); x |
|
matrix([[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7], |
|
[ 8, 9, 10, 11]]) |
|
>>> x.max() |
|
11 |
|
>>> x.max(0) |
|
matrix([[ 8, 9, 10, 11]]) |
|
>>> x.max(1) |
|
matrix([[ 3], |
|
[ 7], |
|
[11]]) |
|
|
|
""" |
|
return N.ndarray.max(self, axis, out, keepdims=True)._collapse(axis) |
|
|
|
def argmax(self, axis=None, out=None): |
|
""" |
|
Indexes of the maximum values along an axis. |
|
|
|
Return the indexes of the first occurrences of the maximum values |
|
along the specified axis. If axis is None, the index is for the |
|
flattened matrix. |
|
|
|
Parameters |
|
---------- |
|
See `numpy.argmax` for complete descriptions |
|
|
|
See Also |
|
-------- |
|
numpy.argmax |
|
|
|
Notes |
|
----- |
|
This is the same as `ndarray.argmax`, but returns a `matrix` object |
|
where `ndarray.argmax` would return an `ndarray`. |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix(np.arange(12).reshape((3,4))); x |
|
matrix([[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7], |
|
[ 8, 9, 10, 11]]) |
|
>>> x.argmax() |
|
11 |
|
>>> x.argmax(0) |
|
matrix([[2, 2, 2, 2]]) |
|
>>> x.argmax(1) |
|
matrix([[3], |
|
[3], |
|
[3]]) |
|
|
|
""" |
|
return N.ndarray.argmax(self, axis, out)._align(axis) |
|
|
|
def min(self, axis=None, out=None): |
|
""" |
|
Return the minimum value along an axis. |
|
|
|
Parameters |
|
---------- |
|
See `amin` for complete descriptions. |
|
|
|
See Also |
|
-------- |
|
amin, ndarray.min |
|
|
|
Notes |
|
----- |
|
This is the same as `ndarray.min`, but returns a `matrix` object |
|
where `ndarray.min` would return an ndarray. |
|
|
|
Examples |
|
-------- |
|
>>> x = -np.matrix(np.arange(12).reshape((3,4))); x |
|
matrix([[ 0, -1, -2, -3], |
|
[ -4, -5, -6, -7], |
|
[ -8, -9, -10, -11]]) |
|
>>> x.min() |
|
-11 |
|
>>> x.min(0) |
|
matrix([[ -8, -9, -10, -11]]) |
|
>>> x.min(1) |
|
matrix([[ -3], |
|
[ -7], |
|
[-11]]) |
|
|
|
""" |
|
return N.ndarray.min(self, axis, out, keepdims=True)._collapse(axis) |
|
|
|
def argmin(self, axis=None, out=None): |
|
""" |
|
Indexes of the minimum values along an axis. |
|
|
|
Return the indexes of the first occurrences of the minimum values |
|
along the specified axis. If axis is None, the index is for the |
|
flattened matrix. |
|
|
|
Parameters |
|
---------- |
|
See `numpy.argmin` for complete descriptions. |
|
|
|
See Also |
|
-------- |
|
numpy.argmin |
|
|
|
Notes |
|
----- |
|
This is the same as `ndarray.argmin`, but returns a `matrix` object |
|
where `ndarray.argmin` would return an `ndarray`. |
|
|
|
Examples |
|
-------- |
|
>>> x = -np.matrix(np.arange(12).reshape((3,4))); x |
|
matrix([[ 0, -1, -2, -3], |
|
[ -4, -5, -6, -7], |
|
[ -8, -9, -10, -11]]) |
|
>>> x.argmin() |
|
11 |
|
>>> x.argmin(0) |
|
matrix([[2, 2, 2, 2]]) |
|
>>> x.argmin(1) |
|
matrix([[3], |
|
[3], |
|
[3]]) |
|
|
|
""" |
|
return N.ndarray.argmin(self, axis, out)._align(axis) |
|
|
|
def ptp(self, axis=None, out=None): |
|
""" |
|
Peak-to-peak (maximum - minimum) value along the given axis. |
|
|
|
Refer to `numpy.ptp` for full documentation. |
|
|
|
See Also |
|
-------- |
|
numpy.ptp |
|
|
|
Notes |
|
----- |
|
Same as `ndarray.ptp`, except, where that would return an `ndarray` object, |
|
this returns a `matrix` object. |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix(np.arange(12).reshape((3,4))); x |
|
matrix([[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7], |
|
[ 8, 9, 10, 11]]) |
|
>>> x.ptp() |
|
11 |
|
>>> x.ptp(0) |
|
matrix([[8, 8, 8, 8]]) |
|
>>> x.ptp(1) |
|
matrix([[3], |
|
[3], |
|
[3]]) |
|
|
|
""" |
|
return N.ndarray.ptp(self, axis, out)._align(axis) |
|
|
|
@property |
|
def I(self): |
|
""" |
|
Returns the (multiplicative) inverse of invertible `self`. |
|
|
|
Parameters |
|
---------- |
|
None |
|
|
|
Returns |
|
------- |
|
ret : matrix object |
|
If `self` is non-singular, `ret` is such that ``ret * self`` == |
|
``self * ret`` == ``np.matrix(np.eye(self[0,:].size))`` all return |
|
``True``. |
|
|
|
Raises |
|
------ |
|
numpy.linalg.LinAlgError: Singular matrix |
|
If `self` is singular. |
|
|
|
See Also |
|
-------- |
|
linalg.inv |
|
|
|
Examples |
|
-------- |
|
>>> m = np.matrix('[1, 2; 3, 4]'); m |
|
matrix([[1, 2], |
|
[3, 4]]) |
|
>>> m.getI() |
|
matrix([[-2. , 1. ], |
|
[ 1.5, -0.5]]) |
|
>>> m.getI() * m |
|
matrix([[ 1., 0.], # may vary |
|
[ 0., 1.]]) |
|
|
|
""" |
|
M, N = self.shape |
|
if M == N: |
|
from numpy.linalg import inv as func |
|
else: |
|
from numpy.linalg import pinv as func |
|
return asmatrix(func(self)) |
|
|
|
@property |
|
def A(self): |
|
""" |
|
Return `self` as an `ndarray` object. |
|
|
|
Equivalent to ``np.asarray(self)``. |
|
|
|
Parameters |
|
---------- |
|
None |
|
|
|
Returns |
|
------- |
|
ret : ndarray |
|
`self` as an `ndarray` |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix(np.arange(12).reshape((3,4))); x |
|
matrix([[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7], |
|
[ 8, 9, 10, 11]]) |
|
>>> x.getA() |
|
array([[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7], |
|
[ 8, 9, 10, 11]]) |
|
|
|
""" |
|
return self.__array__() |
|
|
|
@property |
|
def A1(self): |
|
""" |
|
Return `self` as a flattened `ndarray`. |
|
|
|
Equivalent to ``np.asarray(x).ravel()`` |
|
|
|
Parameters |
|
---------- |
|
None |
|
|
|
Returns |
|
------- |
|
ret : ndarray |
|
`self`, 1-D, as an `ndarray` |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix(np.arange(12).reshape((3,4))); x |
|
matrix([[ 0, 1, 2, 3], |
|
[ 4, 5, 6, 7], |
|
[ 8, 9, 10, 11]]) |
|
>>> x.getA1() |
|
array([ 0, 1, 2, ..., 9, 10, 11]) |
|
|
|
|
|
""" |
|
return self.__array__().ravel() |
|
|
|
|
|
def ravel(self, order='C'): |
|
""" |
|
Return a flattened matrix. |
|
|
|
Refer to `numpy.ravel` for more documentation. |
|
|
|
Parameters |
|
---------- |
|
order : {'C', 'F', 'A', 'K'}, optional |
|
The elements of `m` are read using this index order. 'C' means to |
|
index the elements in C-like order, with the last axis index |
|
changing fastest, back to the first axis index changing slowest. |
|
'F' means to index the elements in Fortran-like index order, with |
|
the first index changing fastest, and the last index changing |
|
slowest. Note that the 'C' and 'F' options take no account of the |
|
memory layout of the underlying array, and only refer to the order |
|
of axis indexing. 'A' means to read the elements in Fortran-like |
|
index order if `m` is Fortran *contiguous* in memory, C-like order |
|
otherwise. 'K' means to read the elements in the order they occur |
|
in memory, except for reversing the data when strides are negative. |
|
By default, 'C' index order is used. |
|
|
|
Returns |
|
------- |
|
ret : matrix |
|
Return the matrix flattened to shape `(1, N)` where `N` |
|
is the number of elements in the original matrix. |
|
A copy is made only if necessary. |
|
|
|
See Also |
|
-------- |
|
matrix.flatten : returns a similar output matrix but always a copy |
|
matrix.flat : a flat iterator on the array. |
|
numpy.ravel : related function which returns an ndarray |
|
|
|
""" |
|
return N.ndarray.ravel(self, order=order) |
|
|
|
@property |
|
def T(self): |
|
""" |
|
Returns the transpose of the matrix. |
|
|
|
Does *not* conjugate! For the complex conjugate transpose, use ``.H``. |
|
|
|
Parameters |
|
---------- |
|
None |
|
|
|
Returns |
|
------- |
|
ret : matrix object |
|
The (non-conjugated) transpose of the matrix. |
|
|
|
See Also |
|
-------- |
|
transpose, getH |
|
|
|
Examples |
|
-------- |
|
>>> m = np.matrix('[1, 2; 3, 4]') |
|
>>> m |
|
matrix([[1, 2], |
|
[3, 4]]) |
|
>>> m.getT() |
|
matrix([[1, 3], |
|
[2, 4]]) |
|
|
|
""" |
|
return self.transpose() |
|
|
|
@property |
|
def H(self): |
|
""" |
|
Returns the (complex) conjugate transpose of `self`. |
|
|
|
Equivalent to ``np.transpose(self)`` if `self` is real-valued. |
|
|
|
Parameters |
|
---------- |
|
None |
|
|
|
Returns |
|
------- |
|
ret : matrix object |
|
complex conjugate transpose of `self` |
|
|
|
Examples |
|
-------- |
|
>>> x = np.matrix(np.arange(12).reshape((3,4))) |
|
>>> z = x - 1j*x; z |
|
matrix([[ 0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j], |
|
[ 4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j], |
|
[ 8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]]) |
|
>>> z.getH() |
|
matrix([[ 0. -0.j, 4. +4.j, 8. +8.j], |
|
[ 1. +1.j, 5. +5.j, 9. +9.j], |
|
[ 2. +2.j, 6. +6.j, 10.+10.j], |
|
[ 3. +3.j, 7. +7.j, 11.+11.j]]) |
|
|
|
""" |
|
if issubclass(self.dtype.type, N.complexfloating): |
|
return self.transpose().conjugate() |
|
else: |
|
return self.transpose() |
|
|
|
|
|
getT = T.fget |
|
getA = A.fget |
|
getA1 = A1.fget |
|
getH = H.fget |
|
getI = I.fget |
|
|
|
def _from_string(str, gdict, ldict): |
|
rows = str.split(';') |
|
rowtup = [] |
|
for row in rows: |
|
trow = row.split(',') |
|
newrow = [] |
|
for x in trow: |
|
newrow.extend(x.split()) |
|
trow = newrow |
|
coltup = [] |
|
for col in trow: |
|
col = col.strip() |
|
try: |
|
thismat = ldict[col] |
|
except KeyError: |
|
try: |
|
thismat = gdict[col] |
|
except KeyError as e: |
|
raise NameError(f"name {col!r} is not defined") from None |
|
|
|
coltup.append(thismat) |
|
rowtup.append(concatenate(coltup, axis=-1)) |
|
return concatenate(rowtup, axis=0) |
|
|
|
|
|
@set_module('numpy') |
|
def bmat(obj, ldict=None, gdict=None): |
|
""" |
|
Build a matrix object from a string, nested sequence, or array. |
|
|
|
Parameters |
|
---------- |
|
obj : str or array_like |
|
Input data. If a string, variables in the current scope may be |
|
referenced by name. |
|
ldict : dict, optional |
|
A dictionary that replaces local operands in current frame. |
|
Ignored if `obj` is not a string or `gdict` is None. |
|
gdict : dict, optional |
|
A dictionary that replaces global operands in current frame. |
|
Ignored if `obj` is not a string. |
|
|
|
Returns |
|
------- |
|
out : matrix |
|
Returns a matrix object, which is a specialized 2-D array. |
|
|
|
See Also |
|
-------- |
|
block : |
|
A generalization of this function for N-d arrays, that returns normal |
|
ndarrays. |
|
|
|
Examples |
|
-------- |
|
>>> A = np.mat('1 1; 1 1') |
|
>>> B = np.mat('2 2; 2 2') |
|
>>> C = np.mat('3 4; 5 6') |
|
>>> D = np.mat('7 8; 9 0') |
|
|
|
All the following expressions construct the same block matrix: |
|
|
|
>>> np.bmat([[A, B], [C, D]]) |
|
matrix([[1, 1, 2, 2], |
|
[1, 1, 2, 2], |
|
[3, 4, 7, 8], |
|
[5, 6, 9, 0]]) |
|
>>> np.bmat(np.r_[np.c_[A, B], np.c_[C, D]]) |
|
matrix([[1, 1, 2, 2], |
|
[1, 1, 2, 2], |
|
[3, 4, 7, 8], |
|
[5, 6, 9, 0]]) |
|
>>> np.bmat('A,B; C,D') |
|
matrix([[1, 1, 2, 2], |
|
[1, 1, 2, 2], |
|
[3, 4, 7, 8], |
|
[5, 6, 9, 0]]) |
|
|
|
""" |
|
if isinstance(obj, str): |
|
if gdict is None: |
|
|
|
frame = sys._getframe().f_back |
|
glob_dict = frame.f_globals |
|
loc_dict = frame.f_locals |
|
else: |
|
glob_dict = gdict |
|
loc_dict = ldict |
|
|
|
return matrix(_from_string(obj, glob_dict, loc_dict)) |
|
|
|
if isinstance(obj, (tuple, list)): |
|
|
|
arr_rows = [] |
|
for row in obj: |
|
if isinstance(row, N.ndarray): |
|
return matrix(concatenate(obj, axis=-1)) |
|
else: |
|
arr_rows.append(concatenate(row, axis=-1)) |
|
return matrix(concatenate(arr_rows, axis=0)) |
|
if isinstance(obj, N.ndarray): |
|
return matrix(obj) |
|
|
|
mat = asmatrix |
|
|