|
from typing import Dict, Iterator, List, Optional, Tuple, Union |
|
|
|
from tokenizers import AddedToken, Tokenizer, decoders, pre_tokenizers, trainers |
|
from tokenizers.models import BPE |
|
from tokenizers.normalizers import NFKC |
|
|
|
from .base_tokenizer import BaseTokenizer |
|
|
|
|
|
class SentencePieceBPETokenizer(BaseTokenizer): |
|
"""SentencePiece BPE Tokenizer |
|
|
|
Represents the BPE algorithm, with the pretokenization used by SentencePiece |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vocab: Optional[Union[str, Dict[str, int]]] = None, |
|
merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None, |
|
unk_token: Union[str, AddedToken] = "<unk>", |
|
replacement: str = "▁", |
|
add_prefix_space: bool = True, |
|
dropout: Optional[float] = None, |
|
fuse_unk: Optional[bool] = False, |
|
): |
|
if vocab is not None and merges is not None: |
|
tokenizer = Tokenizer(BPE(vocab, merges, dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk)) |
|
else: |
|
tokenizer = Tokenizer(BPE(dropout=dropout, unk_token=unk_token, fuse_unk=fuse_unk)) |
|
|
|
if tokenizer.token_to_id(str(unk_token)) is not None: |
|
tokenizer.add_special_tokens([str(unk_token)]) |
|
|
|
tokenizer.normalizer = NFKC() |
|
tokenizer.pre_tokenizer = pre_tokenizers.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) |
|
tokenizer.decoder = decoders.Metaspace(replacement=replacement, add_prefix_space=add_prefix_space) |
|
|
|
parameters = { |
|
"model": "SentencePieceBPE", |
|
"unk_token": unk_token, |
|
"replacement": replacement, |
|
"add_prefix_space": add_prefix_space, |
|
"dropout": dropout, |
|
} |
|
|
|
super().__init__(tokenizer, parameters) |
|
|
|
@staticmethod |
|
def from_file(vocab_filename: str, merges_filename: str, **kwargs): |
|
vocab, merges = BPE.read_file(vocab_filename, merges_filename) |
|
return SentencePieceBPETokenizer(vocab, merges, **kwargs) |
|
|
|
def train( |
|
self, |
|
files: Union[str, List[str]], |
|
vocab_size: int = 30000, |
|
min_frequency: int = 2, |
|
special_tokens: List[Union[str, AddedToken]] = ["<unk>"], |
|
limit_alphabet: int = 1000, |
|
initial_alphabet: List[str] = [], |
|
show_progress: bool = True, |
|
): |
|
"""Train the model using the given files""" |
|
|
|
trainer = trainers.BpeTrainer( |
|
vocab_size=vocab_size, |
|
min_frequency=min_frequency, |
|
special_tokens=special_tokens, |
|
limit_alphabet=limit_alphabet, |
|
initial_alphabet=initial_alphabet, |
|
show_progress=show_progress, |
|
) |
|
if isinstance(files, str): |
|
files = [files] |
|
self._tokenizer.train(files, trainer=trainer) |
|
|
|
def train_from_iterator( |
|
self, |
|
iterator: Union[Iterator[str], Iterator[Iterator[str]]], |
|
vocab_size: int = 30000, |
|
min_frequency: int = 2, |
|
special_tokens: List[Union[str, AddedToken]] = ["<unk>"], |
|
limit_alphabet: int = 1000, |
|
initial_alphabet: List[str] = [], |
|
show_progress: bool = True, |
|
length: Optional[int] = None, |
|
): |
|
"""Train the model using the given iterator""" |
|
|
|
trainer = trainers.BpeTrainer( |
|
vocab_size=vocab_size, |
|
min_frequency=min_frequency, |
|
special_tokens=special_tokens, |
|
limit_alphabet=limit_alphabet, |
|
initial_alphabet=initial_alphabet, |
|
show_progress=show_progress, |
|
) |
|
self._tokenizer.train_from_iterator( |
|
iterator, |
|
trainer=trainer, |
|
length=length, |
|
) |
|
|