Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -1,15 +1,30 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Load the llama2 LLM model
|
5 |
# model = pipeline("text-generation", model="llamalanguage/llama2", tokenizer="llamalanguage/llama2")
|
6 |
-
model = pipeline("text-generation", model="
|
7 |
|
8 |
# Define the chat function that uses the LLM model
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
def chat_interface(input_text):
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
14 |
# Create the Gradio interface
|
15 |
iface = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
# Load the Mistral-7B-v0.1 model and tokenizer
|
6 |
+
model_name = "mistralai/Mistral-7B-v0.1"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
|
10 |
|
11 |
# Load the llama2 LLM model
|
12 |
# model = pipeline("text-generation", model="llamalanguage/llama2", tokenizer="llamalanguage/llama2")
|
13 |
+
# model = pipeline("text-generation", model="mistralai/Mistral-7B-v0.1", tokenizer="meta-llama/Llama-2-7b-chat-hf")
|
14 |
|
15 |
# Define the chat function that uses the LLM model
|
16 |
+
# def chat_interface(input_text):
|
17 |
+
# response = model(input_text, max_length=100, return_full_text=True)[0]["generated_text"]
|
18 |
+
# response_words = response.split()
|
19 |
+
# return response_words
|
20 |
+
|
21 |
+
# Define the chat function that uses the Mistral-7B-v0.1 model
|
22 |
def chat_interface(input_text):
|
23 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
24 |
+
outputs = model.generate(inputs, max_length=100)
|
25 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
26 |
+
return response
|
27 |
+
|
28 |
|
29 |
# Create the Gradio interface
|
30 |
iface = gr.Interface(
|