Spaces:
Runtime error
Runtime error
support cpu only...
Browse files- app.py +3 -3
- cldm/cldm.py +4 -4
- cldm/ddim_hacked.py +2 -2
- ldm/models/diffusion/ddim.py +2 -2
- ldm/models/diffusion/dpm_solver/sampler.py +2 -2
- ldm/models/diffusion/plms.py +2 -2
- ldm/modules/attention.py +1 -1
- ldm/modules/diffusionmodules/util.py +1 -1
- ldm/modules/encoders/modules.py +5 -5
app.py
CHANGED
@@ -17,8 +17,8 @@ import dlib
|
|
17 |
from PIL import Image, ImageDraw
|
18 |
|
19 |
model = create_model('./models/cldm_v15.yaml').cpu()
|
20 |
-
model.load_state_dict(load_state_dict('./models/control_sd15_landmarks.pth', location='
|
21 |
-
model = model
|
22 |
ddim_sampler = DDIMSampler(model)
|
23 |
|
24 |
detector = dlib.get_frontal_face_detector()
|
@@ -56,7 +56,7 @@ def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resoluti
|
|
56 |
detected_map = get_68landmarks_img(img)
|
57 |
detected_map = HWC3(detected_map)
|
58 |
|
59 |
-
control = torch.from_numpy(detected_map.copy()).float()
|
60 |
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
61 |
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
62 |
|
|
|
17 |
from PIL import Image, ImageDraw
|
18 |
|
19 |
model = create_model('./models/cldm_v15.yaml').cpu()
|
20 |
+
model.load_state_dict(load_state_dict('./models/control_sd15_landmarks.pth', location='cpu'))
|
21 |
+
model = model
|
22 |
ddim_sampler = DDIMSampler(model)
|
23 |
|
24 |
detector = dlib.get_frontal_face_detector()
|
|
|
56 |
detected_map = get_68landmarks_img(img)
|
57 |
detected_map = HWC3(detected_map)
|
58 |
|
59 |
+
control = torch.from_numpy(detected_map.copy()).float() / 255.0
|
60 |
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
61 |
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
62 |
|
cldm/cldm.py
CHANGED
@@ -424,12 +424,12 @@ class ControlLDM(LatentDiffusion):
|
|
424 |
|
425 |
def low_vram_shift(self, is_diffusing):
|
426 |
if is_diffusing:
|
427 |
-
self.model = self.model.
|
428 |
-
self.control_model = self.control_model.
|
429 |
self.first_stage_model = self.first_stage_model.cpu()
|
430 |
self.cond_stage_model = self.cond_stage_model.cpu()
|
431 |
else:
|
432 |
self.model = self.model.cpu()
|
433 |
self.control_model = self.control_model.cpu()
|
434 |
-
self.first_stage_model = self.first_stage_model.
|
435 |
-
self.cond_stage_model = self.cond_stage_model.
|
|
|
424 |
|
425 |
def low_vram_shift(self, is_diffusing):
|
426 |
if is_diffusing:
|
427 |
+
self.model = self.model.cpu()
|
428 |
+
self.control_model = self.control_model.cpu()
|
429 |
self.first_stage_model = self.first_stage_model.cpu()
|
430 |
self.cond_stage_model = self.cond_stage_model.cpu()
|
431 |
else:
|
432 |
self.model = self.model.cpu()
|
433 |
self.control_model = self.control_model.cpu()
|
434 |
+
self.first_stage_model = self.first_stage_model.cpu()
|
435 |
+
self.cond_stage_model = self.cond_stage_model.cpu()
|
cldm/ddim_hacked.py
CHANGED
@@ -16,8 +16,8 @@ class DDIMSampler(object):
|
|
16 |
|
17 |
def register_buffer(self, name, attr):
|
18 |
if type(attr) == torch.Tensor:
|
19 |
-
if attr.device != torch.device("
|
20 |
-
attr = attr.to(torch.device("
|
21 |
setattr(self, name, attr)
|
22 |
|
23 |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
|
|
16 |
|
17 |
def register_buffer(self, name, attr):
|
18 |
if type(attr) == torch.Tensor:
|
19 |
+
if attr.device != torch.device("cpu"):
|
20 |
+
attr = attr.to(torch.device("cpu"))
|
21 |
setattr(self, name, attr)
|
22 |
|
23 |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
ldm/models/diffusion/ddim.py
CHANGED
@@ -16,8 +16,8 @@ class DDIMSampler(object):
|
|
16 |
|
17 |
def register_buffer(self, name, attr):
|
18 |
if type(attr) == torch.Tensor:
|
19 |
-
if attr.device != torch.device("
|
20 |
-
attr = attr.to(torch.device("
|
21 |
setattr(self, name, attr)
|
22 |
|
23 |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
|
|
16 |
|
17 |
def register_buffer(self, name, attr):
|
18 |
if type(attr) == torch.Tensor:
|
19 |
+
if attr.device != torch.device("cpu"):
|
20 |
+
attr = attr.to(torch.device("cpu"))
|
21 |
setattr(self, name, attr)
|
22 |
|
23 |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
ldm/models/diffusion/dpm_solver/sampler.py
CHANGED
@@ -19,8 +19,8 @@ class DPMSolverSampler(object):
|
|
19 |
|
20 |
def register_buffer(self, name, attr):
|
21 |
if type(attr) == torch.Tensor:
|
22 |
-
if attr.device != torch.device("
|
23 |
-
attr = attr.to(torch.device("
|
24 |
setattr(self, name, attr)
|
25 |
|
26 |
@torch.no_grad()
|
|
|
19 |
|
20 |
def register_buffer(self, name, attr):
|
21 |
if type(attr) == torch.Tensor:
|
22 |
+
if attr.device != torch.device("cpu"):
|
23 |
+
attr = attr.to(torch.device("cpu"))
|
24 |
setattr(self, name, attr)
|
25 |
|
26 |
@torch.no_grad()
|
ldm/models/diffusion/plms.py
CHANGED
@@ -18,8 +18,8 @@ class PLMSSampler(object):
|
|
18 |
|
19 |
def register_buffer(self, name, attr):
|
20 |
if type(attr) == torch.Tensor:
|
21 |
-
if attr.device != torch.device("
|
22 |
-
attr = attr.to(torch.device("
|
23 |
setattr(self, name, attr)
|
24 |
|
25 |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
|
|
18 |
|
19 |
def register_buffer(self, name, attr):
|
20 |
if type(attr) == torch.Tensor:
|
21 |
+
if attr.device != torch.device("cpu"):
|
22 |
+
attr = attr.to(torch.device("cpu"))
|
23 |
setattr(self, name, attr)
|
24 |
|
25 |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
|
ldm/modules/attention.py
CHANGED
@@ -172,7 +172,7 @@ class CrossAttention(nn.Module):
|
|
172 |
|
173 |
# force cast to fp32 to avoid overflowing
|
174 |
if _ATTN_PRECISION =="fp32":
|
175 |
-
with torch.autocast(enabled=False, device_type = '
|
176 |
q, k = q.float(), k.float()
|
177 |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
178 |
else:
|
|
|
172 |
|
173 |
# force cast to fp32 to avoid overflowing
|
174 |
if _ATTN_PRECISION =="fp32":
|
175 |
+
with torch.autocast(enabled=False, device_type = 'cpu'):
|
176 |
q, k = q.float(), k.float()
|
177 |
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
|
178 |
else:
|
ldm/modules/diffusionmodules/util.py
CHANGED
@@ -133,7 +133,7 @@ class CheckpointFunction(torch.autograd.Function):
|
|
133 |
def backward(ctx, *output_grads):
|
134 |
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
135 |
with torch.enable_grad(), \
|
136 |
-
torch.
|
137 |
# Fixes a bug where the first op in run_function modifies the
|
138 |
# Tensor storage in place, which is not allowed for detach()'d
|
139 |
# Tensors.
|
|
|
133 |
def backward(ctx, *output_grads):
|
134 |
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
135 |
with torch.enable_grad(), \
|
136 |
+
torch.cpu.amp.autocast(**ctx.gpu_autocast_kwargs):
|
137 |
# Fixes a bug where the first op in run_function modifies the
|
138 |
# Tensor storage in place, which is not allowed for detach()'d
|
139 |
# Tensors.
|
ldm/modules/encoders/modules.py
CHANGED
@@ -42,7 +42,7 @@ class ClassEmbedder(nn.Module):
|
|
42 |
c = self.embedding(c)
|
43 |
return c
|
44 |
|
45 |
-
def get_unconditional_conditioning(self, bs, device="
|
46 |
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
47 |
uc = torch.ones((bs,), device=device) * uc_class
|
48 |
uc = {self.key: uc}
|
@@ -57,7 +57,7 @@ def disabled_train(self, mode=True):
|
|
57 |
|
58 |
class FrozenT5Embedder(AbstractEncoder):
|
59 |
"""Uses the T5 transformer encoder for text"""
|
60 |
-
def __init__(self, version="google/t5-v1_1-large", device="
|
61 |
super().__init__()
|
62 |
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
63 |
self.transformer = T5EncoderModel.from_pretrained(version)
|
@@ -92,7 +92,7 @@ class FrozenCLIPEmbedder(AbstractEncoder):
|
|
92 |
"pooled",
|
93 |
"hidden"
|
94 |
]
|
95 |
-
def __init__(self, version="openai/clip-vit-large-patch14", device="
|
96 |
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
|
97 |
super().__init__()
|
98 |
assert layer in self.LAYERS
|
@@ -140,7 +140,7 @@ class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
|
140 |
"last",
|
141 |
"penultimate"
|
142 |
]
|
143 |
-
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="
|
144 |
freeze=True, layer="last"):
|
145 |
super().__init__()
|
146 |
assert layer in self.LAYERS
|
@@ -194,7 +194,7 @@ class FrozenOpenCLIPEmbedder(AbstractEncoder):
|
|
194 |
|
195 |
|
196 |
class FrozenCLIPT5Encoder(AbstractEncoder):
|
197 |
-
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="
|
198 |
clip_max_length=77, t5_max_length=77):
|
199 |
super().__init__()
|
200 |
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
|
|
|
42 |
c = self.embedding(c)
|
43 |
return c
|
44 |
|
45 |
+
def get_unconditional_conditioning(self, bs, device="cpu"):
|
46 |
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
|
47 |
uc = torch.ones((bs,), device=device) * uc_class
|
48 |
uc = {self.key: uc}
|
|
|
57 |
|
58 |
class FrozenT5Embedder(AbstractEncoder):
|
59 |
"""Uses the T5 transformer encoder for text"""
|
60 |
+
def __init__(self, version="google/t5-v1_1-large", device="cpu", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
61 |
super().__init__()
|
62 |
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
63 |
self.transformer = T5EncoderModel.from_pretrained(version)
|
|
|
92 |
"pooled",
|
93 |
"hidden"
|
94 |
]
|
95 |
+
def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
|
96 |
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
|
97 |
super().__init__()
|
98 |
assert layer in self.LAYERS
|
|
|
140 |
"last",
|
141 |
"penultimate"
|
142 |
]
|
143 |
+
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cpu", max_length=77,
|
144 |
freeze=True, layer="last"):
|
145 |
super().__init__()
|
146 |
assert layer in self.LAYERS
|
|
|
194 |
|
195 |
|
196 |
class FrozenCLIPT5Encoder(AbstractEncoder):
|
197 |
+
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cpu",
|
198 |
clip_max_length=77, t5_max_length=77):
|
199 |
super().__init__()
|
200 |
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
|