File size: 4,387 Bytes
c407aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from openai.types.beta.threads import Message, MessageDelta
from os import getenv as os_getenv, path as os_path
from time import sleep
from json import loads as json_loads
import gradio as gr
import openai

OPENAI_API_KEY = os_getenv('OPENAI_API_KEY')

client = openai.OpenAI(api_key=OPENAI_API_KEY)

assistant_id = "asst_NHnYFIdpvioacAJqWYMchJHI"
vector_id = "vs_sqT4VRRTwkH7JPr3AT8CpoXV"

class EventHandler(openai.AssistantEventHandler):
    # def on_event(self, event):
    #     print(f"event: {event.event}\n{event.data}\n\n")
        
    def on_tool_call_created(self, tool_call):
        print(f"\nassistant > {tool_call.type}\n", flush=True)
    
    def on_tool_call_delta(self, delta, snapshot):
        if delta.type == 'code_interpreter':
            if delta.code_interpreter.input:
                print(delta.code_interpreter.input, end="", flush=True)
            if delta.code_interpreter.outputs:
                print(f"\n\noutput >", flush=True)
                for output in delta.code_interpreter.outputs:
                    if output.type == "logs":
                        print(f"\n{output.logs}", flush=True)

def chat(user_message, history, state):
    if not state['user']:
        gr.Warning("You need to authenticate first")
        yield
    else:
        thread = state['thread']
        if thread is None:
            thread = client.beta.threads.create(
                tool_resources={
                    "file_search": {
                        "vector_store_ids": [vector_id]
                    }
                }
            )
            state['thread'] = thread

        client.beta.threads.messages.create(
            thread_id=thread.id,
            role="user",
            content=user_message,
        )

        with client.beta.threads.runs.stream(
            thread_id=thread.id,
            assistant_id=assistant_id,
            event_handler=EventHandler(),
        ) as stream:
            total = ''
            for delta in stream.text_deltas:
                total += delta
                yield total

def chat_nostream(user_message, history, state):
    if state['user'] is None:
        return

    thread = state['thread']
    if thread is None:
        thread = client.beta.threads.create(
            tool_resources={
                "file_search": {
                    "vector_store_ids": [vector_id]
                }
            }
        )
        state['thread'] = thread

    # Add the user's message to the thread
    client.beta.threads.messages.create(
        thread_id=thread.id,
        role="user",
        content=user_message,
    )

    # Run the Assistant
    run = client.beta.threads.runs.create(thread_id=thread.id,
                                        assistant_id=assistant_id)

    while True:
        run_status = client.beta.threads.runs.retrieve(thread_id=thread.id,
                                                        run_id=run.id)
        print(f"Run status: {run_status.status}")
        if run_status.status == 'completed':
            break
        sleep(5)

    messages = client.beta.threads.messages.list(thread_id=thread.id)
    response = messages.data[0].content[0].text.value

    yield response

def new_state():
    return gr.State({
        "user": None,
        "thread": None,
    })

def auth(token, state):
    tokens=os_getenv("APP_TOKENS", None)
    if tokens is None:
        state["user"] = "anonymous"
    else:
        tokens=json_loads(tokens)
        state["user"] = tokens.get(token, None)
    return "", state

AUTH_JS = """function auth_js(token, state) {
    if (!!document.location.hash) {
        token = document.location.hash
        document.location.hash=""
    }        
    return [token, state]
}
"""
with gr.Blocks(title="Dr. Luis Chiozza - Medicina y Psicoanalisis") as demo:
    state = new_state()
    gr.ChatInterface(
        chat,
        title="Dr. Luis Chiozza - Medicina y Psicoanalisis",
        description="Habla con la colección de Medicina y Psicoanalisis del Dr. Luis Chiozza",
        additional_inputs=[state],
        examples=[["Que diferencias hay entre el cuerpo y el Alma?"]],
    )

    token = gr.Textbox(visible=False)
    demo.load(auth,
        [token,state],
        [token,state],
        js=AUTH_JS)

demo.launch(
    height=700,
    allowed_paths=["."])
    # auth_dependency=authenticate) #auth=authenticate)