File size: 3,711 Bytes
08e5ef1
7edda8b
2bede7c
 
7edda8b
 
2bede7c
 
75b770e
08e5ef1
 
 
2bede7c
 
 
75b770e
2bede7c
 
 
75b770e
 
2bede7c
 
 
 
 
 
 
 
 
 
 
 
 
 
08e5ef1
7edda8b
08e5ef1
2bede7c
 
 
 
 
 
08e5ef1
 
 
 
 
5f81af4
08e5ef1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75b770e
 
08e5ef1
 
75b770e
2bede7c
08e5ef1
 
 
 
 
 
 
 
2bede7c
 
7edda8b
 
 
7cd57ad
 
 
 
2bede7c
 
 
 
 
7edda8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bede7c
7cd57ad
 
 
 
 
 
 
 
2bede7c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import shutil
import subprocess

import gradio as gr

from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard

from textwrap import dedent

api = HfApi()

def process_model(model_id, q_method, hf_token):
    
    MODEL_NAME = model_id.split('/')[-1]
    fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin"

    username = whoami(hf_token)["name"]
    
    snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False)
    print("Model downloaded successully!")
    
    fp16_conversion = f"python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}"
    subprocess.run(fp16_conversion, shell=True)
    print("Model converted to fp16 successully!")

    qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf"
    quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}"
    subprocess.run(quantise_ggml, shell=True)
    print("Quantised successfully!")

    # Create empty repo
    repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF"
    repo_url = create_repo(
        repo_id = repo_id,
        repo_type="model",
        exist_ok=True,
        token=hf_token
    )
    print("Empty repo created successfully!")


    card = ModelCard.load(model_id)
    card.data.tags = ["llama-cpp"] if card.data.tags is None else card.data.tags + ["llama-cpp"]
    card.text = dedent(
        f"""
        # {repo_id}
        This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp.
        Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
        ## Use with llama.cpp

        ```bash
        brew install ggerganov/ggerganov/llama.cpp
        ```

        ```bash
        llama-cli --hf-repo {repo_id} --model {qtype.split("/")[-1]} -p "The meaning to life and the universe is "
        ```
        """
    )
    card.save(os.path.join(MODEL_NAME, "README-new.md"))
    
    api.upload_file(
        path_or_fileobj=qtype,
        path_in_repo=qtype.split("/")[-1],
        repo_id=repo_id,
        repo_type="model",
    )

    api.upload_file(
        path_or_fileobj=f"{MODEL_NAME}/README-new.md",
        path_in_repo=README.md,
        repo_id=repo_id,
        repo_type="model",
    )
    
    print("Uploaded successfully!")

    shutil.rmtree(MODEL_NAME)
    print("Folder cleaned up successfully!")

    return (
        f'Find your repo <a href=\'{repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
        "llama.png",
    )    

# Create Gradio interface
iface = gr.Interface(
    fn=process_model, 
    inputs=[
        gr.Textbox(
            lines=1, 
            label="Hub Model ID",
            info="Model repo ID"
        ),
        gr.Dropdown(
            ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], 
            label="Quantization Method", 
            info="GGML quantisation type"
        ),
        gr.Textbox(
            lines=1, 
            label="HF Write Token",
            info="https://hf.co/settings/token"
        )
    ], 
    outputs=[
        gr.Markdown(label="output"),
        gr.Image(show_label=False),
    ],
    title="Create your own GGUF Quants!",
    description="Create GGUF quants from any Hugging Face repository! You need to specify a write token obtained in https://hf.co/settings/tokens.",
    article="<p>Find your write token at <a href='https://huggingface.co/settings/tokens' target='_blank'>token settings</a></p>",
    
)

# Launch the interface
iface.launch(debug=True)