Spaces:
Running
on
A10G
Running
on
A10G
Imatrix support
Browse files- .gitattributes +1 -0
- Dockerfile +11 -5
- app.py +117 -25
- imatrix_calibration.txt +3 -0
- start.sh +2 -1
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
llama.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
llama.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
imatrix_calibration.txt filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
FROM
|
|
|
2 |
ENV DEBIAN_FRONTEND=noninteractive
|
3 |
RUN apt-get update && \
|
4 |
apt-get upgrade -y && \
|
@@ -21,8 +22,8 @@ RUN apt-get update && \
|
|
21 |
libxmlsec1-dev \
|
22 |
libffi-dev \
|
23 |
liblzma-dev \
|
24 |
-
|
25 |
-
|
26 |
|
27 |
RUN useradd -m -u 1000 user
|
28 |
USER user
|
@@ -43,6 +44,8 @@ COPY --chown=1000 . ${HOME}/app
|
|
43 |
RUN git clone https://github.com/ggerganov/llama.cpp
|
44 |
RUN pip install -r llama.cpp/requirements.txt
|
45 |
|
|
|
|
|
46 |
ENV PYTHONPATH=${HOME}/app \
|
47 |
PYTHONUNBUFFERED=1 \
|
48 |
HF_HUB_ENABLE_HF_TRANSFER=1 \
|
@@ -52,6 +55,9 @@ ENV PYTHONPATH=${HOME}/app \
|
|
52 |
GRADIO_THEME=huggingface \
|
53 |
TQDM_POSITION=-1 \
|
54 |
TQDM_MININTERVAL=1 \
|
55 |
-
SYSTEM=spaces
|
|
|
|
|
|
|
56 |
|
57 |
-
ENTRYPOINT /bin/sh start.sh
|
|
|
1 |
+
FROM nvidia/cuda:11.8.0-cudnn8-devel-ubuntu22.04
|
2 |
+
|
3 |
ENV DEBIAN_FRONTEND=noninteractive
|
4 |
RUN apt-get update && \
|
5 |
apt-get upgrade -y && \
|
|
|
22 |
libxmlsec1-dev \
|
23 |
libffi-dev \
|
24 |
liblzma-dev \
|
25 |
+
ffmpeg \
|
26 |
+
nvidia-driver-515
|
27 |
|
28 |
RUN useradd -m -u 1000 user
|
29 |
USER user
|
|
|
44 |
RUN git clone https://github.com/ggerganov/llama.cpp
|
45 |
RUN pip install -r llama.cpp/requirements.txt
|
46 |
|
47 |
+
COPY imatrix_calibration.txt ${HOME}/app/llama.cpp/
|
48 |
+
|
49 |
ENV PYTHONPATH=${HOME}/app \
|
50 |
PYTHONUNBUFFERED=1 \
|
51 |
HF_HUB_ENABLE_HF_TRANSFER=1 \
|
|
|
55 |
GRADIO_THEME=huggingface \
|
56 |
TQDM_POSITION=-1 \
|
57 |
TQDM_MININTERVAL=1 \
|
58 |
+
SYSTEM=spaces \
|
59 |
+
LD_LIBRARY_PATH=/usr/local/cuda/lib64:${LD_LIBRARY_PATH} \
|
60 |
+
PATH=/usr/local/nvidia/bin:${PATH}
|
61 |
+
|
62 |
|
63 |
+
ENTRYPOINT ["/bin/bash", "-c", "cd llama.cpp && LLAMA_CUDA=1 make -j && cd .. && /bin/sh start.sh"]
|
app.py
CHANGED
@@ -17,6 +17,32 @@ from textwrap import dedent
|
|
17 |
|
18 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
21 |
if oauth_token.token is None:
|
22 |
raise ValueError("You have to be logged in.")
|
@@ -57,7 +83,7 @@ def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, s
|
|
57 |
|
58 |
print("Sharded model has been uploaded successfully!")
|
59 |
|
60 |
-
def process_model(model_id, q_method, private_repo, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
61 |
if oauth_token.token is None:
|
62 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
63 |
model_name = model_id.split('/')[-1]
|
@@ -96,18 +122,37 @@ def process_model(model_id, q_method, private_repo, split_model, split_max_tenso
|
|
96 |
print("Model converted to fp16 successfully!")
|
97 |
print(f"Converted model path: {fp16}")
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
username = whoami(oauth_token.token)["name"]
|
100 |
-
quantized_gguf_name = f"{model_name.lower()}-{q_method.lower()}.gguf"
|
101 |
quantized_gguf_path = quantized_gguf_name
|
102 |
-
|
|
|
|
|
|
|
103 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
104 |
if result.returncode != 0:
|
105 |
raise Exception(f"Error quantizing: {result.stderr}")
|
106 |
-
print(f"Quantized successfully with {q_method} option!")
|
107 |
print(f"Quantized model path: {quantized_gguf_path}")
|
108 |
|
109 |
# Create empty repo
|
110 |
-
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{q_method}-GGUF", exist_ok=True, private=private_repo)
|
111 |
new_repo_id = new_repo_url.repo_id
|
112 |
print("Repo created successfully!", new_repo_url)
|
113 |
|
@@ -181,13 +226,26 @@ def process_model(model_id, q_method, private_repo, split_model, split_max_tenso
|
|
181 |
)
|
182 |
except Exception as e:
|
183 |
raise Exception(f"Error uploading quantized model: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
api.upload_file(
|
186 |
path_or_fileobj=f"README.md",
|
187 |
path_in_repo=f"README.md",
|
188 |
repo_id=new_repo_id,
|
189 |
)
|
190 |
-
print(f"Uploaded successfully with {q_method} option!")
|
191 |
|
192 |
return (
|
193 |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
@@ -201,58 +259,92 @@ def process_model(model_id, q_method, private_repo, split_model, split_max_tenso
|
|
201 |
|
202 |
|
203 |
# Create Gradio interface
|
204 |
-
with gr.Blocks() as demo:
|
205 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
206 |
gr.LoginButton(min_width=250)
|
207 |
|
208 |
-
|
209 |
label="Hub Model ID",
|
210 |
placeholder="Search for model id on Huggingface",
|
211 |
search_type="model",
|
212 |
)
|
213 |
|
214 |
-
|
215 |
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
216 |
label="Quantization Method",
|
217 |
info="GGML quantization type",
|
218 |
value="Q4_K_M",
|
219 |
-
filterable=False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
)
|
221 |
|
222 |
-
|
223 |
value=False,
|
224 |
label="Private Repo",
|
225 |
info="Create a private repo under your username."
|
226 |
)
|
227 |
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
value=False,
|
230 |
label="Split Model",
|
231 |
info="Shard the model using gguf-split."
|
232 |
)
|
233 |
|
234 |
-
|
235 |
value=256,
|
236 |
label="Max Tensors per File",
|
237 |
info="Maximum number of tensors per file when splitting model.",
|
238 |
visible=False
|
239 |
)
|
240 |
|
241 |
-
|
242 |
label="Max File Size",
|
243 |
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
|
244 |
visible=False
|
245 |
)
|
246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
iface = gr.Interface(
|
248 |
fn=process_model,
|
249 |
inputs=[
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
256 |
],
|
257 |
outputs=[
|
258 |
gr.Markdown(label="output"),
|
@@ -263,13 +355,13 @@ with gr.Blocks() as demo:
|
|
263 |
api_name=False
|
264 |
)
|
265 |
|
266 |
-
def
|
267 |
return gr.update(visible=split_model), gr.update(visible=split_model)
|
268 |
|
269 |
-
|
270 |
-
fn=
|
271 |
-
inputs=
|
272 |
-
outputs=[
|
273 |
)
|
274 |
|
275 |
def restart_space():
|
|
|
17 |
|
18 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
19 |
|
20 |
+
def generate_importance_matrix(model_path, train_data_path):
|
21 |
+
imatrix_command = f"./imatrix -m ../{model_path} -f {train_data_path} -ngl 99"
|
22 |
+
|
23 |
+
os.chdir("llama.cpp")
|
24 |
+
|
25 |
+
compile_command = "LLAMA_CUDA=1 make -j"
|
26 |
+
compile_result = subprocess.run(compile_command, shell=True, capture_output=True, text=True)
|
27 |
+
if compile_result.returncode != 0:
|
28 |
+
raise Exception(f"Error compiling imatrix: {compile_result.stderr}")
|
29 |
+
|
30 |
+
|
31 |
+
print(f"Current working directory: {os.getcwd()}")
|
32 |
+
print(f"Files in the current directory: {os.listdir('.')}")
|
33 |
+
|
34 |
+
if not os.path.isfile(f"../{model_path}"):
|
35 |
+
raise Exception(f"Model file not found: {model_path}")
|
36 |
+
|
37 |
+
print("Running imatrix command...")
|
38 |
+
result = subprocess.run(imatrix_command, shell=True, capture_output=True, text=True)
|
39 |
+
|
40 |
+
os.chdir("..")
|
41 |
+
|
42 |
+
if result.returncode != 0:
|
43 |
+
raise Exception(f"Error generating importance matrix: {result.stderr}")
|
44 |
+
print("Importance matrix generated successfully!")
|
45 |
+
|
46 |
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
47 |
if oauth_token.token is None:
|
48 |
raise ValueError("You have to be logged in.")
|
|
|
83 |
|
84 |
print("Sharded model has been uploaded successfully!")
|
85 |
|
86 |
+
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
|
87 |
if oauth_token.token is None:
|
88 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
89 |
model_name = model_id.split('/')[-1]
|
|
|
122 |
print("Model converted to fp16 successfully!")
|
123 |
print(f"Converted model path: {fp16}")
|
124 |
|
125 |
+
imatrix_path = "llama.cpp/imatrix.dat"
|
126 |
+
|
127 |
+
if use_imatrix:
|
128 |
+
if train_data_file:
|
129 |
+
train_data_path = train_data_file.name
|
130 |
+
else:
|
131 |
+
train_data_path = "imatrix_calibration.txt"
|
132 |
+
|
133 |
+
print(f"Training data file path: {train_data_path}")
|
134 |
+
|
135 |
+
if not os.path.isfile(train_data_path):
|
136 |
+
raise Exception(f"Training data file not found: {train_data_path}")
|
137 |
+
|
138 |
+
generate_importance_matrix(fp16, train_data_path)
|
139 |
+
else:
|
140 |
+
print("Not using imatrix quantization.")
|
141 |
username = whoami(oauth_token.token)["name"]
|
142 |
+
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
143 |
quantized_gguf_path = quantized_gguf_name
|
144 |
+
if use_imatrix:
|
145 |
+
quantise_ggml = f"./llama.cpp/quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
|
146 |
+
else:
|
147 |
+
quantise_ggml = f"./llama.cpp/quantize {fp16} {quantized_gguf_path} {q_method}"
|
148 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
149 |
if result.returncode != 0:
|
150 |
raise Exception(f"Error quantizing: {result.stderr}")
|
151 |
+
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
152 |
print(f"Quantized model path: {quantized_gguf_path}")
|
153 |
|
154 |
# Create empty repo
|
155 |
+
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
156 |
new_repo_id = new_repo_url.repo_id
|
157 |
print("Repo created successfully!", new_repo_url)
|
158 |
|
|
|
226 |
)
|
227 |
except Exception as e:
|
228 |
raise Exception(f"Error uploading quantized model: {e}")
|
229 |
+
|
230 |
+
|
231 |
+
imatrix_path = "llama.cpp/imatrix.dat"
|
232 |
+
if os.path.isfile(imatrix_path):
|
233 |
+
try:
|
234 |
+
print(f"Uploading imatrix.dat: {imatrix_path}")
|
235 |
+
api.upload_file(
|
236 |
+
path_or_fileobj=imatrix_path,
|
237 |
+
path_in_repo="imatrix.dat",
|
238 |
+
repo_id=new_repo_id,
|
239 |
+
)
|
240 |
+
except Exception as e:
|
241 |
+
raise Exception(f"Error uploading imatrix.dat: {e}")
|
242 |
|
243 |
api.upload_file(
|
244 |
path_or_fileobj=f"README.md",
|
245 |
path_in_repo=f"README.md",
|
246 |
repo_id=new_repo_id,
|
247 |
)
|
248 |
+
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
249 |
|
250 |
return (
|
251 |
f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
|
|
|
259 |
|
260 |
|
261 |
# Create Gradio interface
|
262 |
+
with gr.Blocks(css=".gradio-container {max-height: 600px; overflow-y: auto;}") as demo:
|
263 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
264 |
gr.LoginButton(min_width=250)
|
265 |
|
266 |
+
model_id = HuggingfaceHubSearch(
|
267 |
label="Hub Model ID",
|
268 |
placeholder="Search for model id on Huggingface",
|
269 |
search_type="model",
|
270 |
)
|
271 |
|
272 |
+
q_method = gr.Dropdown(
|
273 |
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
274 |
label="Quantization Method",
|
275 |
info="GGML quantization type",
|
276 |
value="Q4_K_M",
|
277 |
+
filterable=False,
|
278 |
+
visible=True
|
279 |
+
)
|
280 |
+
|
281 |
+
imatrix_q_method = gr.Dropdown(
|
282 |
+
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
283 |
+
label="Imatrix Quantization Method",
|
284 |
+
info="GGML imatrix quants type",
|
285 |
+
value="IQ4_NL",
|
286 |
+
filterable=False,
|
287 |
+
visible=False
|
288 |
+
)
|
289 |
+
|
290 |
+
use_imatrix = gr.Checkbox(
|
291 |
+
value=False,
|
292 |
+
label="Use Imatrix Quantization",
|
293 |
+
info="Use importance matrix for quantization."
|
294 |
)
|
295 |
|
296 |
+
private_repo = gr.Checkbox(
|
297 |
value=False,
|
298 |
label="Private Repo",
|
299 |
info="Create a private repo under your username."
|
300 |
)
|
301 |
|
302 |
+
train_data_file = gr.File(
|
303 |
+
label="Training Data File",
|
304 |
+
file_types=["txt"],
|
305 |
+
visible=False
|
306 |
+
)
|
307 |
+
|
308 |
+
split_model = gr.Checkbox(
|
309 |
value=False,
|
310 |
label="Split Model",
|
311 |
info="Shard the model using gguf-split."
|
312 |
)
|
313 |
|
314 |
+
split_max_tensors = gr.Number(
|
315 |
value=256,
|
316 |
label="Max Tensors per File",
|
317 |
info="Maximum number of tensors per file when splitting model.",
|
318 |
visible=False
|
319 |
)
|
320 |
|
321 |
+
split_max_size = gr.Textbox(
|
322 |
label="Max File Size",
|
323 |
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
|
324 |
visible=False
|
325 |
)
|
326 |
|
327 |
+
def update_visibility(use_imatrix):
|
328 |
+
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
|
329 |
+
|
330 |
+
use_imatrix.change(
|
331 |
+
fn=update_visibility,
|
332 |
+
inputs=use_imatrix,
|
333 |
+
outputs=[q_method, imatrix_q_method, train_data_file]
|
334 |
+
)
|
335 |
+
|
336 |
iface = gr.Interface(
|
337 |
fn=process_model,
|
338 |
inputs=[
|
339 |
+
model_id,
|
340 |
+
q_method,
|
341 |
+
use_imatrix,
|
342 |
+
imatrix_q_method,
|
343 |
+
private_repo,
|
344 |
+
train_data_file,
|
345 |
+
split_model,
|
346 |
+
split_max_tensors,
|
347 |
+
split_max_size,
|
348 |
],
|
349 |
outputs=[
|
350 |
gr.Markdown(label="output"),
|
|
|
355 |
api_name=False
|
356 |
)
|
357 |
|
358 |
+
def update_split_visibility(split_model):
|
359 |
return gr.update(visible=split_model), gr.update(visible=split_model)
|
360 |
|
361 |
+
split_model.change(
|
362 |
+
fn=update_split_visibility,
|
363 |
+
inputs=split_model,
|
364 |
+
outputs=[split_max_tensors, split_max_size]
|
365 |
)
|
366 |
|
367 |
def restart_space():
|
imatrix_calibration.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52062b7643edddbbc83435331ed1bc6ffc3eb463fae9df3551df52fb5638f0e8
|
3 |
+
size 201119
|
start.sh
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
cd llama.cpp
|
2 |
-
make -j quantize gguf-split
|
|
|
3 |
cd ..
|
4 |
python app.py
|
|
|
1 |
cd llama.cpp
|
2 |
+
make -j quantize gguf-split imatrix
|
3 |
+
|
4 |
cd ..
|
5 |
python app.py
|