File size: 2,838 Bytes
2a13495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin`

Attributes:

    _out_channels (list of int): specify number of channels for each encoder feature tensor
    _depth (int): specify number of stages in decoder (in other words number of downsampling operations)
    _in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3)

Methods:

    forward(self, x: torch.Tensor)
        produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of
        shape NCHW (features should be sorted in descending order according to spatial resolution, starting
        with resolution same as input `x` tensor).

        Input: `x` with shape (1, 3, 64, 64)
        Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes
                [(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8),
                (1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ)

        also should support number of features according to specified depth, e.g. if depth = 5,
        number of feature tensors = 6 (one with same resolution as input and 5 downsampled),
        depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled).
"""

import torchvision
import torch.nn as nn

from ._base import EncoderMixin


class MobileNetV2Encoder(torchvision.models.MobileNetV2, EncoderMixin):
    def __init__(self, out_channels, depth=5, **kwargs):
        super().__init__(**kwargs)
        self._depth = depth
        self._out_channels = out_channels
        self._in_channels = 3
        del self.classifier

    def get_stages(self):
        return [
            nn.Identity(),
            self.features[:2],
            self.features[2:4],
            self.features[4:7],
            self.features[7:14],
            self.features[14:],
        ]

    def forward(self, x):
        stages = self.get_stages()

        features = []
        for i in range(self._depth + 1):
            x = stages[i](x)
            features.append(x)

        return features

    def load_state_dict(self, state_dict, **kwargs):
        state_dict.pop("classifier.1.bias", None)
        state_dict.pop("classifier.1.weight", None)
        super().load_state_dict(state_dict, **kwargs)


mobilenet_encoders = {
    "mobilenet_v2": {
        "encoder": MobileNetV2Encoder,
        "pretrained_settings": {
            "imagenet": {
                "mean": [0.485, 0.456, 0.406],
                "std": [0.229, 0.224, 0.225],
                "url": "https://download.pytorch.org/models/mobilenet_v2-b0353104.pth",
                "input_space": "RGB",
                "input_range": [0, 1],
            },
        },
        "params": {"out_channels": (3, 16, 24, 32, 96, 1280),},
    },
}