File size: 5,664 Bytes
2a13495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from ._base import EncoderMixin
from timm.models.resnet import ResNet
from timm.models.res2net import Bottle2neck
import torch.nn as nn


class Res2NetEncoder(ResNet, EncoderMixin):
    def __init__(self, out_channels, depth=5, **kwargs):
        super().__init__(**kwargs)
        self._depth = depth
        self._out_channels = out_channels
        self._in_channels = 3

        del self.fc
        del self.global_pool

    def get_stages(self):
        return [
            nn.Identity(),
            nn.Sequential(self.conv1, self.bn1, self.act1),
            nn.Sequential(self.maxpool, self.layer1),
            self.layer2,
            self.layer3,
            self.layer4,
        ]

    def make_dilated(self, *args, **kwargs):
        raise ValueError("Res2Net encoders do not support dilated mode")

    def forward(self, x):
        stages = self.get_stages()

        features = []
        for i in range(self._depth + 1):
            x = stages[i](x)
            features.append(x)

        return features

    def load_state_dict(self, state_dict, **kwargs):
        state_dict.pop("fc.bias", None)
        state_dict.pop("fc.weight", None)
        super().load_state_dict(state_dict, **kwargs)


res2net_weights = {
    "timm-res2net50_26w_4s": {
        "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_4s-06e79181.pth",  # noqa
    },
    "timm-res2net50_48w_2s": {
        "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_48w_2s-afed724a.pth",  # noqa
    },
    "timm-res2net50_14w_8s": {
        "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_14w_8s-6527dddc.pth",  # noqa
    },
    "timm-res2net50_26w_6s": {
        "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_6s-19041792.pth",  # noqa
    },
    "timm-res2net50_26w_8s": {
        "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net50_26w_8s-2c7c9f12.pth",  # noqa
    },
    "timm-res2net101_26w_4s": {
        "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2net101_26w_4s-02a759a1.pth",  # noqa
    },
    "timm-res2next50": {
        "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-res2net/res2next50_4s-6ef7e7bf.pth",  # noqa
    },
}

pretrained_settings = {}
for model_name, sources in res2net_weights.items():
    pretrained_settings[model_name] = {}
    for source_name, source_url in sources.items():
        pretrained_settings[model_name][source_name] = {
            "url": source_url,
            "input_size": [3, 224, 224],
            "input_range": [0, 1],
            "mean": [0.485, 0.456, 0.406],
            "std": [0.229, 0.224, 0.225],
            "num_classes": 1000,
        }


timm_res2net_encoders = {
    "timm-res2net50_26w_4s": {
        "encoder": Res2NetEncoder,
        "pretrained_settings": pretrained_settings["timm-res2net50_26w_4s"],
        "params": {
            "out_channels": (3, 64, 256, 512, 1024, 2048),
            "block": Bottle2neck,
            "layers": [3, 4, 6, 3],
            "base_width": 26,
            "block_args": {"scale": 4},
        },
    },
    "timm-res2net101_26w_4s": {
        "encoder": Res2NetEncoder,
        "pretrained_settings": pretrained_settings["timm-res2net101_26w_4s"],
        "params": {
            "out_channels": (3, 64, 256, 512, 1024, 2048),
            "block": Bottle2neck,
            "layers": [3, 4, 23, 3],
            "base_width": 26,
            "block_args": {"scale": 4},
        },
    },
    "timm-res2net50_26w_6s": {
        "encoder": Res2NetEncoder,
        "pretrained_settings": pretrained_settings["timm-res2net50_26w_6s"],
        "params": {
            "out_channels": (3, 64, 256, 512, 1024, 2048),
            "block": Bottle2neck,
            "layers": [3, 4, 6, 3],
            "base_width": 26,
            "block_args": {"scale": 6},
        },
    },
    "timm-res2net50_26w_8s": {
        "encoder": Res2NetEncoder,
        "pretrained_settings": pretrained_settings["timm-res2net50_26w_8s"],
        "params": {
            "out_channels": (3, 64, 256, 512, 1024, 2048),
            "block": Bottle2neck,
            "layers": [3, 4, 6, 3],
            "base_width": 26,
            "block_args": {"scale": 8},
        },
    },
    "timm-res2net50_48w_2s": {
        "encoder": Res2NetEncoder,
        "pretrained_settings": pretrained_settings["timm-res2net50_48w_2s"],
        "params": {
            "out_channels": (3, 64, 256, 512, 1024, 2048),
            "block": Bottle2neck,
            "layers": [3, 4, 6, 3],
            "base_width": 48,
            "block_args": {"scale": 2},
        },
    },
    "timm-res2net50_14w_8s": {
        "encoder": Res2NetEncoder,
        "pretrained_settings": pretrained_settings["timm-res2net50_14w_8s"],
        "params": {
            "out_channels": (3, 64, 256, 512, 1024, 2048),
            "block": Bottle2neck,
            "layers": [3, 4, 6, 3],
            "base_width": 14,
            "block_args": {"scale": 8},
        },
    },
    "timm-res2next50": {
        "encoder": Res2NetEncoder,
        "pretrained_settings": pretrained_settings["timm-res2next50"],
        "params": {
            "out_channels": (3, 64, 256, 512, 1024, 2048),
            "block": Bottle2neck,
            "layers": [3, 4, 6, 3],
            "base_width": 4,
            "cardinality": 8,
            "block_args": {"scale": 4},
        },
    },
}