File size: 24,372 Bytes
2a13495 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
"""Various metrics based on Type I and Type II errors.
References:
https://en.wikipedia.org/wiki/Confusion_matrix
Example:
.. code-block:: python
import segmentation_models_pytorch as smp
# lets assume we have multilabel prediction for 3 classes
output = torch.rand([10, 3, 256, 256])
target = torch.rand([10, 3, 256, 256]).round().long()
# first compute statistics for true positives, false positives, false negative and
# true negative "pixels"
tp, fp, fn, tn = smp.metrics.get_stats(output, target, mode='multilabel', threshold=0.5)
# then compute metrics with required reduction (see metric docs)
iou_score = smp.metrics.iou_score(tp, fp, fn, tn, reduction="micro")
f1_score = smp.metrics.f1_score(tp, fp, fn, tn, reduction="micro")
f2_score = smp.metrics.fbeta_score(tp, fp, fn, tn, beta=2, reduction="micro")
accuracy = smp.metrics.accuracy(tp, fp, fn, tn, reduction="macro")
recall = smp.metrics.recall(tp, fp, fn, tn, reduction="micro-imagewise")
"""
import torch
import warnings
from typing import Optional, List, Tuple, Union
__all__ = [
"get_stats",
"fbeta_score",
"f1_score",
"iou_score",
"accuracy",
"precision",
"recall",
"sensitivity",
"specificity",
"balanced_accuracy",
"positive_predictive_value",
"negative_predictive_value",
"false_negative_rate",
"false_positive_rate",
"false_discovery_rate",
"false_omission_rate",
"positive_likelihood_ratio",
"negative_likelihood_ratio",
]
###################################################################################################
# Statistics computation (true positives, false positives, false negatives, false positives)
###################################################################################################
def get_stats(
output: Union[torch.LongTensor, torch.FloatTensor],
target: torch.LongTensor,
mode: str,
ignore_index: Optional[int] = None,
threshold: Optional[Union[float, List[float]]] = None,
num_classes: Optional[int] = None,
) -> Tuple[torch.LongTensor]:
"""Compute true positive, false positive, false negative, true negative 'pixels'
for each image and each class.
Args:
output (Union[torch.LongTensor, torch.FloatTensor]): Model output with following
shapes and types depending on the specified ``mode``:
'binary'
shape (N, 1, ...) and ``torch.LongTensor`` or ``torch.FloatTensor``
'multilabel'
shape (N, C, ...) and ``torch.LongTensor`` or ``torch.FloatTensor``
'multiclass'
shape (N, ...) and ``torch.LongTensor``
target (torch.LongTensor): Targets with following shapes depending on the specified ``mode``:
'binary'
shape (N, 1, ...)
'multilabel'
shape (N, C, ...)
'multiclass'
shape (N, ...)
mode (str): One of ``'binary'`` | ``'multilabel'`` | ``'multiclass'``
ignore_index (Optional[int]): Label to ignore on for metric computation.
**Not** supproted for ``'binary'`` and ``'multilabel'`` modes. Defaults to None.
threshold (Optional[float, List[float]]): Binarization threshold for
``output`` in case of ``'binary'`` or ``'multilabel'`` modes. Defaults to None.
num_classes (Optional[int]): Number of classes, necessary attribute
only for ``'multiclass'`` mode. Class values should be in range 0..(num_classes - 1).
If ``ignore_index`` is specified it should be outside the classes range, e.g. ``-1`` or
``255``.
Raises:
ValueError: in case of misconfiguration.
Returns:
Tuple[torch.LongTensor]: true_positive, false_positive, false_negative,
true_negative tensors (N, C) shape each.
"""
if torch.is_floating_point(target):
raise ValueError(
f"Target should be one of the integer types, got {target.dtype}."
)
if torch.is_floating_point(output) and threshold is None:
raise ValueError(
f"Output should be one of the integer types if ``threshold`` is not None, got {output.dtype}."
)
if torch.is_floating_point(output) and mode == "multiclass":
raise ValueError(
f"For ``multiclass`` mode ``target`` should be one of the integer types, got {output.dtype}."
)
if mode not in {"binary", "multiclass", "multilabel"}:
raise ValueError(
f"``mode`` should be in ['binary', 'multiclass', 'multilabel'], got mode={mode}."
)
if mode == "multiclass" and threshold is not None:
raise ValueError(
"``threshold`` parameter does not supported for this 'multiclass' mode"
)
if output.shape != target.shape:
raise ValueError(
"Dimensions should match, but ``output`` shape is not equal to ``target`` "
+ f"shape, {output.shape} != {target.shape}"
)
if mode != "multiclass" and ignore_index is not None:
raise ValueError(
f"``ignore_index`` parameter is not supproted for '{mode}' mode"
)
if mode == "multiclass" and num_classes is None:
raise ValueError(
"``num_classes`` attribute should be not ``None`` for 'multiclass' mode."
)
if ignore_index is not None and 0 <= ignore_index <= num_classes - 1:
raise ValueError(
f"``ignore_index`` should be outside the class values range, but got class values in range "
f"0..{num_classes - 1} and ``ignore_index={ignore_index}``. Hint: if you have ``ignore_index = 0``"
f"consirder subtracting ``1`` from your target and model output to make ``ignore_index = -1``"
f"and relevant class values started from ``0``."
)
if mode == "multiclass":
tp, fp, fn, tn = _get_stats_multiclass(
output, target, num_classes, ignore_index
)
else:
if threshold is not None:
output = torch.where(output >= threshold, 1, 0)
target = torch.where(target >= threshold, 1, 0)
tp, fp, fn, tn = _get_stats_multilabel(output, target)
return tp, fp, fn, tn
@torch.no_grad()
def _get_stats_multiclass(
output: torch.LongTensor,
target: torch.LongTensor,
num_classes: int,
ignore_index: Optional[int],
) -> Tuple[torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor]:
batch_size, *dims = output.shape
num_elements = torch.prod(torch.tensor(dims)).long()
if ignore_index is not None:
ignore = target == ignore_index
output = torch.where(ignore, -1, output)
target = torch.where(ignore, -1, target)
ignore_per_sample = ignore.view(batch_size, -1).sum(1)
tp_count = torch.zeros(batch_size, num_classes, dtype=torch.long)
fp_count = torch.zeros(batch_size, num_classes, dtype=torch.long)
fn_count = torch.zeros(batch_size, num_classes, dtype=torch.long)
tn_count = torch.zeros(batch_size, num_classes, dtype=torch.long)
for i in range(batch_size):
target_i = target[i]
output_i = output[i]
mask = output_i == target_i
matched = torch.where(mask, target_i, -1)
tp = torch.histc(matched.float(), bins=num_classes, min=0, max=num_classes - 1)
fp = (
torch.histc(output_i.float(), bins=num_classes, min=0, max=num_classes - 1)
- tp
)
fn = (
torch.histc(target_i.float(), bins=num_classes, min=0, max=num_classes - 1)
- tp
)
tn = num_elements - tp - fp - fn
if ignore_index is not None:
tn = tn - ignore_per_sample[i]
tp_count[i] = tp.long()
fp_count[i] = fp.long()
fn_count[i] = fn.long()
tn_count[i] = tn.long()
return tp_count, fp_count, fn_count, tn_count
@torch.no_grad()
def _get_stats_multilabel(
output: torch.LongTensor, target: torch.LongTensor,
) -> Tuple[torch.LongTensor, torch.LongTensor, torch.LongTensor, torch.LongTensor]:
batch_size, num_classes, *dims = target.shape
output = output.view(batch_size, num_classes, -1)
target = target.view(batch_size, num_classes, -1)
tp = (output * target).sum(2)
fp = output.sum(2) - tp
fn = target.sum(2) - tp
tn = torch.prod(torch.tensor(dims)) - (tp + fp + fn)
return tp, fp, fn, tn
###################################################################################################
# Metrics computation
###################################################################################################
def _handle_zero_division(x, zero_division):
nans = torch.isnan(x)
if torch.any(nans) and zero_division == "warn":
warnings.warn("Zero division in metric calculation!")
value = zero_division if zero_division != "warn" else 0
value = torch.tensor(value, dtype=x.dtype).to(x.device)
x = torch.where(nans, value, x)
return x
def _compute_metric(
metric_fn,
tp,
fp,
fn,
tn,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division="warn",
**metric_kwargs,
) -> float:
if class_weights is None and reduction is not None and "weighted" in reduction:
raise ValueError(
f"Class weights should be provided for `{reduction}` reduction"
)
class_weights = class_weights if class_weights is not None else 1.0
class_weights = torch.tensor(class_weights).to(tp.device)
class_weights = class_weights / class_weights.sum()
if reduction == "micro":
tp = tp.sum()
fp = fp.sum()
fn = fn.sum()
tn = tn.sum()
score = metric_fn(tp, fp, fn, tn, **metric_kwargs)
elif reduction == "macro" or reduction == "weighted":
tp = tp.sum(0)
fp = fp.sum(0)
fn = fn.sum(0)
tn = tn.sum(0)
score = metric_fn(tp, fp, fn, tn, **metric_kwargs)
score = _handle_zero_division(score, zero_division)
score = (score * class_weights).mean()
elif reduction == "micro-imagewise":
tp = tp.sum(1)
fp = fp.sum(1)
fn = fn.sum(1)
tn = tn.sum(1)
score = metric_fn(tp, fp, fn, tn, **metric_kwargs)
score = _handle_zero_division(score, zero_division)
score = score.mean()
elif reduction == "macro-imagewise" or reduction == "weighted-imagewise":
score = metric_fn(tp, fp, fn, tn, **metric_kwargs)
score = _handle_zero_division(score, zero_division)
score = (score.mean(0) * class_weights).mean()
elif reduction == "none" or reduction is None:
score = metric_fn(tp, fp, fn, tn, **metric_kwargs)
score = _handle_zero_division(score, zero_division)
else:
raise ValueError(
"`reduction` should be in [micro, macro, weighted, micro-imagewise,"
+ "macro-imagesize, weighted-imagewise, none, None]"
)
return score
# Logic for metric computation, all metrics are with the same interface
def _fbeta_score(tp, fp, fn, tn, beta=1):
beta_tp = (1 + beta ** 2) * tp
beta_fn = (beta ** 2) * fn
score = beta_tp / (beta_tp + beta_fn + fp)
return score
def _iou_score(tp, fp, fn, tn):
return tp / (tp + fp + fn)
def _accuracy(tp, fp, fn, tn):
return (tp + tn) / (tp + fp + fn + tn)
def _sensitivity(tp, fp, fn, tn):
return tp / (tp + fn)
def _specificity(tp, fp, fn, tn):
return tn / (tn + fp)
def _balanced_accuracy(tp, fp, fn, tn):
return (_sensitivity(tp, fp, fn, tn) + _specificity(tp, fp, fn, tn)) / 2
def _positive_predictive_value(tp, fp, fn, tn):
return tp / (tp + fp)
def _negative_predictive_value(tp, fp, fn, tn):
return tn / (tn + fn)
def _false_negative_rate(tp, fp, fn, tn):
return fn / (fn + tp)
def _false_positive_rate(tp, fp, fn, tn):
return fp / (fp + tn)
def _false_discovery_rate(tp, fp, fn, tn):
return 1 - _positive_predictive_value(tp, fp, fn, tn)
def _false_omission_rate(tp, fp, fn, tn):
return 1 - _negative_predictive_value(tp, fp, fn, tn)
def _positive_likelihood_ratio(tp, fp, fn, tn):
return _sensitivity(tp, fp, fn, tn) / _false_positive_rate(tp, fp, fn, tn)
def _negative_likelihood_ratio(tp, fp, fn, tn):
return _false_negative_rate(tp, fp, fn, tn) / _specificity(tp, fp, fn, tn)
def fbeta_score(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
beta: float = 1.0,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""F beta score"""
return _compute_metric(
_fbeta_score,
tp,
fp,
fn,
tn,
beta=beta,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def f1_score(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""F1 score"""
return _compute_metric(
_fbeta_score,
tp,
fp,
fn,
tn,
beta=1.0,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def iou_score(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""IoU score or Jaccard index""" # noqa
return _compute_metric(
_iou_score,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def accuracy(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""Accuracy"""
return _compute_metric(
_accuracy,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def sensitivity(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""Sensitivity, recall, hit rate, or true positive rate (TPR)"""
return _compute_metric(
_sensitivity,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def specificity(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""Specificity, selectivity or true negative rate (TNR)"""
return _compute_metric(
_specificity,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def balanced_accuracy(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""Balanced accuracy"""
return _compute_metric(
_balanced_accuracy,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def positive_predictive_value(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""Precision or positive predictive value (PPV)"""
return _compute_metric(
_positive_predictive_value,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def negative_predictive_value(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""Negative predictive value (NPV)"""
return _compute_metric(
_negative_predictive_value,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def false_negative_rate(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""Miss rate or false negative rate (FNR)"""
return _compute_metric(
_false_negative_rate,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def false_positive_rate(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""Fall-out or false positive rate (FPR)"""
return _compute_metric(
_false_positive_rate,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def false_discovery_rate(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""False discovery rate (FDR)""" # noqa
return _compute_metric(
_false_discovery_rate,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def false_omission_rate(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""False omission rate (FOR)""" # noqa
return _compute_metric(
_false_omission_rate,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def positive_likelihood_ratio(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""Positive likelihood ratio (LR+)"""
return _compute_metric(
_positive_likelihood_ratio,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
def negative_likelihood_ratio(
tp: torch.LongTensor,
fp: torch.LongTensor,
fn: torch.LongTensor,
tn: torch.LongTensor,
reduction: Optional[str] = None,
class_weights: Optional[List[float]] = None,
zero_division: Union[str, float] = 1.0,
) -> torch.Tensor:
"""Negative likelihood ratio (LR-)"""
return _compute_metric(
_negative_likelihood_ratio,
tp,
fp,
fn,
tn,
reduction=reduction,
class_weights=class_weights,
zero_division=zero_division,
)
_doc = """
Args:
tp (torch.LongTensor): tensor of shape (N, C), true positive cases
fp (torch.LongTensor): tensor of shape (N, C), false positive cases
fn (torch.LongTensor): tensor of shape (N, C), false negative cases
tn (torch.LongTensor): tensor of shape (N, C), true negative cases
reduction (Optional[str]): Define how to aggregate metric between classes and images:
- 'micro'
Sum true positive, false positive, false negative and true negative pixels over
all images and all classes and then compute score.
- 'macro'
Sum true positive, false positive, false negative and true negative pixels over
all images for each label, then compute score for each label separately and average labels scores.
This does not take label imbalance into account.
- 'weighted'
Sum true positive, false positive, false negative and true negative pixels over
all images for each label, then compute score for each label separately and average
weighted labels scores.
- 'micro-imagewise'
Sum true positive, false positive, false negative and true negative pixels for **each image**,
then compute score for **each image** and average scores over dataset. All images contribute equally
to final score, however takes into accout class imbalance for each image.
- 'macro-imagewise'
Compute score for each image and for each class on that image separately, then compute average score
on each image over labels and average image scores over dataset. Does not take into account label
imbalance on each image.
- 'weighted-imagewise'
Compute score for each image and for each class on that image separately, then compute weighted average
score on each image over labels and average image scores over dataset.
- 'none' or ``None``
Same as ``'macro-imagewise'``, but without any reduction.
For ``'binary'`` case ``'micro' = 'macro' = 'weighted'`` and
``'micro-imagewise' = 'macro-imagewise' = 'weighted-imagewise'``.
Prefixes ``'micro'``, ``'macro'`` and ``'weighted'`` define how the scores for classes will be aggregated,
while postfix ``'imagewise'`` defines how scores between the images will be aggregated.
class_weights (Optional[List[float]]): list of class weights for metric
aggregation, in case of `weighted*` reduction is chosen. Defaults to None.
zero_division (Union[str, float]): Sets the value to return when there is a zero division,
i.e. when all predictions and labels are negative. If set to “warn”, this acts as 0,
but warnings are also raised. Defaults to 1.
Returns:
torch.Tensor: if ``'reduction'`` is not ``None`` or ``'none'`` returns scalar metric,
else returns tensor of shape (N, C)
References:
https://en.wikipedia.org/wiki/Confusion_matrix
"""
fbeta_score.__doc__ += _doc
f1_score.__doc__ += _doc
iou_score.__doc__ += _doc
accuracy.__doc__ += _doc
sensitivity.__doc__ += _doc
specificity.__doc__ += _doc
balanced_accuracy.__doc__ += _doc
positive_predictive_value.__doc__ += _doc
negative_predictive_value.__doc__ += _doc
false_negative_rate.__doc__ += _doc
false_positive_rate.__doc__ += _doc
false_discovery_rate.__doc__ += _doc
false_omission_rate.__doc__ += _doc
positive_likelihood_ratio.__doc__ += _doc
negative_likelihood_ratio.__doc__ += _doc
precision = positive_predictive_value
recall = sensitivity
|