|
import torch |
|
from . import initialization as init |
|
|
|
|
|
class SegmentationModel(torch.nn.Module): |
|
def initialize(self): |
|
init.initialize_decoder(self.decoder) |
|
init.initialize_head(self.segmentation_head) |
|
if self.classification_head is not None: |
|
init.initialize_head(self.classification_head) |
|
|
|
def check_input_shape(self, x): |
|
|
|
h, w = x.shape[-2:] |
|
output_stride = self.encoder.output_stride |
|
if h % output_stride != 0 or w % output_stride != 0: |
|
new_h = ( |
|
(h // output_stride + 1) * output_stride |
|
if h % output_stride != 0 |
|
else h |
|
) |
|
new_w = ( |
|
(w // output_stride + 1) * output_stride |
|
if w % output_stride != 0 |
|
else w |
|
) |
|
raise RuntimeError( |
|
f"Wrong input shape height={h}, width={w}. Expected image height and width " |
|
f"divisible by {output_stride}. Consider pad your images to shape ({new_h}, {new_w})." |
|
) |
|
|
|
def forward(self, x): |
|
"""Sequentially pass `x` trough model`s encoder, decoder and heads""" |
|
|
|
self.check_input_shape(x) |
|
|
|
features = self.encoder(x) |
|
decoder_output = self.decoder(*features) |
|
|
|
masks = self.segmentation_head(decoder_output) |
|
|
|
if self.classification_head is not None: |
|
labels = self.classification_head(features[-1]) |
|
return masks, labels |
|
|
|
return masks |
|
|
|
@torch.no_grad() |
|
def predict(self, x): |
|
"""Inference method. Switch model to `eval` mode, call `.forward(x)` with `torch.no_grad()` |
|
|
|
Args: |
|
x: 4D torch tensor with shape (batch_size, channels, height, width) |
|
|
|
Return: |
|
prediction: 4D torch tensor with shape (batch_size, classes, height, width) |
|
|
|
""" |
|
if self.training: |
|
self.eval() |
|
|
|
x = self.forward(x) |
|
|
|
return x |
|
|