|
""" |
|
BSD 3-Clause License |
|
|
|
Copyright (c) Soumith Chintala 2016, |
|
All rights reserved. |
|
|
|
Redistribution and use in source and binary forms, with or without |
|
modification, are permitted provided that the following conditions are met: |
|
|
|
* Redistributions of source code must retain the above copyright notice, this |
|
list of conditions and the following disclaimer. |
|
|
|
* Redistributions in binary form must reproduce the above copyright notice, |
|
this list of conditions and the following disclaimer in the documentation |
|
and/or other materials provided with the distribution. |
|
|
|
* Neither the name of the copyright holder nor the names of its |
|
contributors may be used to endorse or promote products derived from |
|
this software without specific prior written permission. |
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
""" |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
__all__ = ["DeepLabV3Decoder"] |
|
|
|
|
|
class DeepLabV3Decoder(nn.Sequential): |
|
def __init__(self, in_channels, out_channels=256, atrous_rates=(12, 24, 36)): |
|
super().__init__( |
|
ASPP(in_channels, out_channels, atrous_rates), |
|
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(), |
|
) |
|
self.out_channels = out_channels |
|
|
|
def forward(self, *features): |
|
return super().forward(features[-1]) |
|
|
|
|
|
class DeepLabV3PlusDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
encoder_channels, |
|
out_channels=256, |
|
atrous_rates=(12, 24, 36), |
|
output_stride=16, |
|
): |
|
super().__init__() |
|
if output_stride not in {8, 16}: |
|
raise ValueError( |
|
"Output stride should be 8 or 16, got {}.".format(output_stride) |
|
) |
|
|
|
self.out_channels = out_channels |
|
self.output_stride = output_stride |
|
|
|
self.aspp = nn.Sequential( |
|
ASPP(encoder_channels[-1], out_channels, atrous_rates, separable=True), |
|
SeparableConv2d( |
|
out_channels, out_channels, kernel_size=3, padding=1, bias=False |
|
), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(), |
|
) |
|
|
|
scale_factor = 2 if output_stride == 8 else 4 |
|
self.up = nn.UpsamplingBilinear2d(scale_factor=scale_factor) |
|
|
|
highres_in_channels = encoder_channels[-4] |
|
highres_out_channels = 48 |
|
self.block1 = nn.Sequential( |
|
nn.Conv2d( |
|
highres_in_channels, highres_out_channels, kernel_size=1, bias=False |
|
), |
|
nn.BatchNorm2d(highres_out_channels), |
|
nn.ReLU(), |
|
) |
|
self.block2 = nn.Sequential( |
|
SeparableConv2d( |
|
highres_out_channels + out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
padding=1, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(), |
|
) |
|
|
|
def forward(self, *features): |
|
aspp_features = self.aspp(features[-1]) |
|
aspp_features = self.up(aspp_features) |
|
high_res_features = self.block1(features[-4]) |
|
concat_features = torch.cat([aspp_features, high_res_features], dim=1) |
|
fused_features = self.block2(concat_features) |
|
return fused_features |
|
|
|
|
|
class ASPPConv(nn.Sequential): |
|
def __init__(self, in_channels, out_channels, dilation): |
|
super().__init__( |
|
nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
padding=dilation, |
|
dilation=dilation, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(), |
|
) |
|
|
|
|
|
class ASPPSeparableConv(nn.Sequential): |
|
def __init__(self, in_channels, out_channels, dilation): |
|
super().__init__( |
|
SeparableConv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
padding=dilation, |
|
dilation=dilation, |
|
bias=False, |
|
), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(), |
|
) |
|
|
|
|
|
class ASPPPooling(nn.Sequential): |
|
def __init__(self, in_channels, out_channels): |
|
super().__init__( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(), |
|
) |
|
|
|
def forward(self, x): |
|
size = x.shape[-2:] |
|
for mod in self: |
|
x = mod(x) |
|
return F.interpolate(x, size=size, mode="bilinear", align_corners=False) |
|
|
|
|
|
class ASPP(nn.Module): |
|
def __init__(self, in_channels, out_channels, atrous_rates, separable=False): |
|
super(ASPP, self).__init__() |
|
modules = [] |
|
modules.append( |
|
nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, 1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(), |
|
) |
|
) |
|
|
|
rate1, rate2, rate3 = tuple(atrous_rates) |
|
ASPPConvModule = ASPPConv if not separable else ASPPSeparableConv |
|
|
|
modules.append(ASPPConvModule(in_channels, out_channels, rate1)) |
|
modules.append(ASPPConvModule(in_channels, out_channels, rate2)) |
|
modules.append(ASPPConvModule(in_channels, out_channels, rate3)) |
|
modules.append(ASPPPooling(in_channels, out_channels)) |
|
|
|
self.convs = nn.ModuleList(modules) |
|
|
|
self.project = nn.Sequential( |
|
nn.Conv2d(5 * out_channels, out_channels, kernel_size=1, bias=False), |
|
nn.BatchNorm2d(out_channels), |
|
nn.ReLU(), |
|
nn.Dropout(0.5), |
|
) |
|
|
|
def forward(self, x): |
|
res = [] |
|
for conv in self.convs: |
|
res.append(conv(x)) |
|
res = torch.cat(res, dim=1) |
|
return self.project(res) |
|
|
|
|
|
class SeparableConv2d(nn.Sequential): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
bias=True, |
|
): |
|
dephtwise_conv = nn.Conv2d( |
|
in_channels, |
|
in_channels, |
|
kernel_size, |
|
stride=stride, |
|
padding=padding, |
|
dilation=dilation, |
|
groups=in_channels, |
|
bias=False, |
|
) |
|
pointwise_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias,) |
|
super().__init__(dephtwise_conv, pointwise_conv) |
|
|