Implement cellseg prediction
Browse files
app.py
CHANGED
@@ -1,7 +1,1251 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torch.nn import (
|
4 |
+
Module,
|
5 |
+
Conv2d,
|
6 |
+
BatchNorm2d,
|
7 |
+
Identity,
|
8 |
+
UpsamplingBilinear2d,
|
9 |
+
Mish,
|
10 |
+
ReLU,
|
11 |
+
Sequential,
|
12 |
+
)
|
13 |
+
from torch.nn.functional import interpolate, grid_sample, pad
|
14 |
+
import numpy as np
|
15 |
+
from copy import deepcopy
|
16 |
+
import os, argparse, math
|
17 |
+
import tifffile as tif
|
18 |
+
from typing import Tuple, List, Mapping
|
19 |
|
20 |
+
from monai.utils import (
|
21 |
+
BlendMode,
|
22 |
+
PytorchPadMode,
|
23 |
+
convert_data_type,
|
24 |
+
ensure_tuple,
|
25 |
+
fall_back_tuple,
|
26 |
+
look_up_option,
|
27 |
+
convert_to_dst_type,
|
28 |
+
)
|
29 |
+
from monai.utils.misc import ensure_tuple_size, ensure_tuple_rep, issequenceiterable
|
30 |
+
from monai.networks.layers.convutils import gaussian_1d
|
31 |
+
from monai.networks.layers.simplelayers import separable_filtering
|
32 |
|
33 |
+
from segmentation_models_pytorch import MAnet
|
34 |
+
|
35 |
+
from skimage.io import imread as io_imread
|
36 |
+
from skimage.util.dtype import dtype_range
|
37 |
+
from skimage._shared.utils import _supported_float_type
|
38 |
+
from scipy.ndimage import find_objects, binary_fill_holes
|
39 |
+
|
40 |
+
|
41 |
+
########################### Data Loading Modules #########################################################
|
42 |
+
DTYPE_RANGE = dtype_range.copy()
|
43 |
+
DTYPE_RANGE.update((d.__name__, limits) for d, limits in dtype_range.items())
|
44 |
+
DTYPE_RANGE.update(
|
45 |
+
{
|
46 |
+
"uint10": (0, 2 ** 10 - 1),
|
47 |
+
"uint12": (0, 2 ** 12 - 1),
|
48 |
+
"uint14": (0, 2 ** 14 - 1),
|
49 |
+
"bool": dtype_range[bool],
|
50 |
+
"float": dtype_range[np.float64],
|
51 |
+
}
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
def _output_dtype(dtype_or_range, image_dtype):
|
56 |
+
if type(dtype_or_range) in [list, tuple, np.ndarray]:
|
57 |
+
# pair of values: always return float.
|
58 |
+
return _supported_float_type(image_dtype)
|
59 |
+
if type(dtype_or_range) == type:
|
60 |
+
# already a type: return it
|
61 |
+
return dtype_or_range
|
62 |
+
if dtype_or_range in DTYPE_RANGE:
|
63 |
+
# string key in DTYPE_RANGE dictionary
|
64 |
+
try:
|
65 |
+
# if it's a canonical numpy dtype, convert
|
66 |
+
return np.dtype(dtype_or_range).type
|
67 |
+
except TypeError: # uint10, uint12, uint14
|
68 |
+
# otherwise, return uint16
|
69 |
+
return np.uint16
|
70 |
+
else:
|
71 |
+
raise ValueError(
|
72 |
+
"Incorrect value for out_range, should be a valid image data "
|
73 |
+
f"type or a pair of values, got {dtype_or_range}."
|
74 |
+
)
|
75 |
+
|
76 |
+
|
77 |
+
def intensity_range(image, range_values="image", clip_negative=False):
|
78 |
+
if range_values == "dtype":
|
79 |
+
range_values = image.dtype.type
|
80 |
+
|
81 |
+
if range_values == "image":
|
82 |
+
i_min = np.min(image)
|
83 |
+
i_max = np.max(image)
|
84 |
+
elif range_values in DTYPE_RANGE:
|
85 |
+
i_min, i_max = DTYPE_RANGE[range_values]
|
86 |
+
if clip_negative:
|
87 |
+
i_min = 0
|
88 |
+
else:
|
89 |
+
i_min, i_max = range_values
|
90 |
+
return i_min, i_max
|
91 |
+
|
92 |
+
|
93 |
+
def rescale_intensity(image, in_range="image", out_range="dtype"):
|
94 |
+
out_dtype = _output_dtype(out_range, image.dtype)
|
95 |
+
|
96 |
+
imin, imax = map(float, intensity_range(image, in_range))
|
97 |
+
omin, omax = map(
|
98 |
+
float, intensity_range(image, out_range, clip_negative=(imin >= 0))
|
99 |
+
)
|
100 |
+
image = np.clip(image, imin, imax)
|
101 |
+
|
102 |
+
if imin != imax:
|
103 |
+
image = (image - imin) / (imax - imin)
|
104 |
+
return np.asarray(image * (omax - omin) + omin, dtype=out_dtype)
|
105 |
+
else:
|
106 |
+
return np.clip(image, omin, omax).astype(out_dtype)
|
107 |
+
|
108 |
+
|
109 |
+
def _normalize(img):
|
110 |
+
non_zero_vals = img[np.nonzero(img)]
|
111 |
+
percentiles = np.percentile(non_zero_vals, [0, 99.5])
|
112 |
+
img_norm = rescale_intensity(
|
113 |
+
img, in_range=(percentiles[0], percentiles[1]), out_range="uint8"
|
114 |
+
)
|
115 |
+
|
116 |
+
return img_norm.astype(np.uint8)
|
117 |
+
|
118 |
+
|
119 |
+
def pred_transforms(filename):
|
120 |
+
# LoadImage
|
121 |
+
img = (
|
122 |
+
tif.imread(filename)
|
123 |
+
if filename.endswith(".tif") or filename.endswith(".tiff")
|
124 |
+
else io_imread(filename)
|
125 |
+
)
|
126 |
+
|
127 |
+
if len(img.shape) == 2:
|
128 |
+
img = np.repeat(np.expand_dims(img, axis=-1), 3, axis=-1)
|
129 |
+
elif len(img.shape) == 3 and img.shape[-1] > 3:
|
130 |
+
img = img[:, :, :3]
|
131 |
+
|
132 |
+
img = img.astype(np.float32)
|
133 |
+
img = _normalize(img)
|
134 |
+
img = np.moveaxis(img, -1, 0)
|
135 |
+
img = (img - img.min()) / (img.max() - img.min())
|
136 |
+
|
137 |
+
return torch.FloatTensor(img).unsqueeze(0)
|
138 |
+
|
139 |
+
|
140 |
+
################################################################################
|
141 |
+
|
142 |
+
########################### MODEL Architecture #################################
|
143 |
+
class SegformerGH(MAnet):
|
144 |
+
def __init__(
|
145 |
+
self,
|
146 |
+
encoder_name: str = "mit_b5",
|
147 |
+
encoder_weights="imagenet",
|
148 |
+
decoder_channels=(256, 128, 64, 32, 32),
|
149 |
+
decoder_pab_channels=256,
|
150 |
+
in_channels: int = 3,
|
151 |
+
classes: int = 3,
|
152 |
+
):
|
153 |
+
super(SegformerGH, self).__init__(
|
154 |
+
encoder_name=encoder_name,
|
155 |
+
encoder_weights=encoder_weights,
|
156 |
+
decoder_channels=decoder_channels,
|
157 |
+
decoder_pab_channels=decoder_pab_channels,
|
158 |
+
in_channels=in_channels,
|
159 |
+
classes=classes,
|
160 |
+
)
|
161 |
+
|
162 |
+
convert_relu_to_mish(self.encoder)
|
163 |
+
convert_relu_to_mish(self.decoder)
|
164 |
+
|
165 |
+
self.cellprob_head = DeepSegmantationHead(
|
166 |
+
in_channels=decoder_channels[-1], out_channels=1, kernel_size=3,
|
167 |
+
)
|
168 |
+
self.gradflow_head = DeepSegmantationHead(
|
169 |
+
in_channels=decoder_channels[-1], out_channels=2, kernel_size=3,
|
170 |
+
)
|
171 |
+
|
172 |
+
def forward(self, x):
|
173 |
+
"""Sequentially pass `x` trough model`s encoder, decoder and heads"""
|
174 |
+
self.check_input_shape(x)
|
175 |
+
|
176 |
+
features = self.encoder(x)
|
177 |
+
decoder_output = self.decoder(*features)
|
178 |
+
|
179 |
+
gradflow_mask = self.gradflow_head(decoder_output)
|
180 |
+
cellprob_mask = self.cellprob_head(decoder_output)
|
181 |
+
|
182 |
+
masks = torch.cat([gradflow_mask, cellprob_mask], dim=1)
|
183 |
+
|
184 |
+
return masks
|
185 |
+
|
186 |
+
|
187 |
+
class DeepSegmantationHead(Sequential):
|
188 |
+
def __init__(self, in_channels, out_channels, kernel_size=3, upsampling=1):
|
189 |
+
conv2d_1 = Conv2d(
|
190 |
+
in_channels,
|
191 |
+
in_channels // 2,
|
192 |
+
kernel_size=kernel_size,
|
193 |
+
padding=kernel_size // 2,
|
194 |
+
)
|
195 |
+
bn = BatchNorm2d(in_channels // 2)
|
196 |
+
conv2d_2 = Conv2d(
|
197 |
+
in_channels // 2,
|
198 |
+
out_channels,
|
199 |
+
kernel_size=kernel_size,
|
200 |
+
padding=kernel_size // 2,
|
201 |
+
)
|
202 |
+
mish = Mish(inplace=True)
|
203 |
+
|
204 |
+
upsampling = (
|
205 |
+
UpsamplingBilinear2d(scale_factor=upsampling)
|
206 |
+
if upsampling > 1
|
207 |
+
else Identity()
|
208 |
+
)
|
209 |
+
activation = Identity()
|
210 |
+
super().__init__(conv2d_1, mish, bn, conv2d_2, upsampling, activation)
|
211 |
+
|
212 |
+
|
213 |
+
def convert_relu_to_mish(model):
|
214 |
+
for child_name, child in model.named_children():
|
215 |
+
if isinstance(child, ReLU):
|
216 |
+
setattr(model, child_name, Mish(inplace=True))
|
217 |
+
else:
|
218 |
+
convert_relu_to_mish(child)
|
219 |
+
|
220 |
+
|
221 |
+
#####################################################################################
|
222 |
+
|
223 |
+
########################### Sliding Window Inference #################################
|
224 |
+
class GaussianFilter(Module):
|
225 |
+
def __init__(
|
226 |
+
self, spatial_dims, sigma, truncated=4.0, approx="erf", requires_grad=False,
|
227 |
+
) -> None:
|
228 |
+
if issequenceiterable(sigma):
|
229 |
+
if len(sigma) != spatial_dims: # type: ignore
|
230 |
+
raise ValueError
|
231 |
+
else:
|
232 |
+
sigma = [deepcopy(sigma) for _ in range(spatial_dims)] # type: ignore
|
233 |
+
super().__init__()
|
234 |
+
self.sigma = [
|
235 |
+
torch.nn.Parameter(
|
236 |
+
torch.as_tensor(
|
237 |
+
s,
|
238 |
+
dtype=torch.float,
|
239 |
+
device=s.device if isinstance(s, torch.Tensor) else None,
|
240 |
+
),
|
241 |
+
requires_grad=requires_grad,
|
242 |
+
)
|
243 |
+
for s in sigma # type: ignore
|
244 |
+
]
|
245 |
+
self.truncated = truncated
|
246 |
+
self.approx = approx
|
247 |
+
for idx, param in enumerate(self.sigma):
|
248 |
+
self.register_parameter(f"kernel_sigma_{idx}", param)
|
249 |
+
|
250 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
251 |
+
_kernel = [
|
252 |
+
gaussian_1d(s, truncated=self.truncated, approx=self.approx)
|
253 |
+
for s in self.sigma
|
254 |
+
]
|
255 |
+
return separable_filtering(x=x, kernels=_kernel)
|
256 |
+
|
257 |
+
|
258 |
+
def compute_importance_map(
|
259 |
+
patch_size, mode=BlendMode.CONSTANT, sigma_scale=0.125, device="cpu"
|
260 |
+
):
|
261 |
+
mode = look_up_option(mode, BlendMode)
|
262 |
+
device = torch.device(device)
|
263 |
+
|
264 |
+
center_coords = [i // 2 for i in patch_size]
|
265 |
+
sigma_scale = ensure_tuple_rep(sigma_scale, len(patch_size))
|
266 |
+
sigmas = [i * sigma_s for i, sigma_s in zip(patch_size, sigma_scale)]
|
267 |
+
|
268 |
+
importance_map = torch.zeros(patch_size, device=device)
|
269 |
+
importance_map[tuple(center_coords)] = 1
|
270 |
+
pt_gaussian = GaussianFilter(len(patch_size), sigmas).to(
|
271 |
+
device=device, dtype=torch.float
|
272 |
+
)
|
273 |
+
importance_map = pt_gaussian(importance_map.unsqueeze(0).unsqueeze(0))
|
274 |
+
importance_map = importance_map.squeeze(0).squeeze(0)
|
275 |
+
importance_map = importance_map / torch.max(importance_map)
|
276 |
+
importance_map = importance_map.float()
|
277 |
+
|
278 |
+
return importance_map
|
279 |
+
|
280 |
+
|
281 |
+
def first(iterable, default=None):
|
282 |
+
for i in iterable:
|
283 |
+
return i
|
284 |
+
|
285 |
+
return default
|
286 |
+
|
287 |
+
|
288 |
+
def dense_patch_slices(image_size, patch_size, scan_interval):
|
289 |
+
num_spatial_dims = len(image_size)
|
290 |
+
patch_size = get_valid_patch_size(image_size, patch_size)
|
291 |
+
scan_interval = ensure_tuple_size(scan_interval, num_spatial_dims)
|
292 |
+
|
293 |
+
scan_num = []
|
294 |
+
for i in range(num_spatial_dims):
|
295 |
+
if scan_interval[i] == 0:
|
296 |
+
scan_num.append(1)
|
297 |
+
else:
|
298 |
+
num = int(math.ceil(float(image_size[i]) / scan_interval[i]))
|
299 |
+
scan_dim = first(
|
300 |
+
d
|
301 |
+
for d in range(num)
|
302 |
+
if d * scan_interval[i] + patch_size[i] >= image_size[i]
|
303 |
+
)
|
304 |
+
scan_num.append(scan_dim + 1 if scan_dim is not None else 1)
|
305 |
+
|
306 |
+
starts = []
|
307 |
+
for dim in range(num_spatial_dims):
|
308 |
+
dim_starts = []
|
309 |
+
for idx in range(scan_num[dim]):
|
310 |
+
start_idx = idx * scan_interval[dim]
|
311 |
+
start_idx -= max(start_idx + patch_size[dim] - image_size[dim], 0)
|
312 |
+
dim_starts.append(start_idx)
|
313 |
+
starts.append(dim_starts)
|
314 |
+
out = np.asarray([x.flatten() for x in np.meshgrid(*starts, indexing="ij")]).T
|
315 |
+
return [tuple(slice(s, s + patch_size[d]) for d, s in enumerate(x)) for x in out]
|
316 |
+
|
317 |
+
|
318 |
+
def get_valid_patch_size(image_size, patch_size):
|
319 |
+
ndim = len(image_size)
|
320 |
+
patch_size_ = ensure_tuple_size(patch_size, ndim)
|
321 |
+
|
322 |
+
# ensure patch size dimensions are not larger than image dimension, if a dimension is None or 0 use whole dimension
|
323 |
+
return tuple(min(ms, ps or ms) for ms, ps in zip(image_size, patch_size_))
|
324 |
+
|
325 |
+
|
326 |
+
class Resize:
|
327 |
+
def __init__(self, spatial_size):
|
328 |
+
self.size_mode = "all"
|
329 |
+
self.spatial_size = spatial_size
|
330 |
+
|
331 |
+
def __call__(self, img):
|
332 |
+
input_ndim = img.ndim - 1 # spatial ndim
|
333 |
+
output_ndim = len(ensure_tuple(self.spatial_size))
|
334 |
+
|
335 |
+
if output_ndim > input_ndim:
|
336 |
+
input_shape = ensure_tuple_size(img.shape, output_ndim + 1, 1)
|
337 |
+
img = img.reshape(input_shape)
|
338 |
+
|
339 |
+
spatial_size_ = fall_back_tuple(self.spatial_size, img.shape[1:])
|
340 |
+
|
341 |
+
if (
|
342 |
+
tuple(img.shape[1:]) == spatial_size_
|
343 |
+
): # spatial shape is already the desired
|
344 |
+
return img
|
345 |
+
|
346 |
+
img_, *_ = convert_data_type(img, torch.Tensor, dtype=torch.float)
|
347 |
+
|
348 |
+
resized = interpolate(
|
349 |
+
input=img_.unsqueeze(0), size=spatial_size_, mode="nearest",
|
350 |
+
)
|
351 |
+
out, *_ = convert_to_dst_type(resized.squeeze(0), img)
|
352 |
+
return out
|
353 |
+
|
354 |
+
|
355 |
+
def sliding_window_inference(
|
356 |
+
inputs,
|
357 |
+
roi_size,
|
358 |
+
sw_batch_size,
|
359 |
+
predictor,
|
360 |
+
overlap,
|
361 |
+
mode=BlendMode.CONSTANT,
|
362 |
+
sigma_scale=0.125,
|
363 |
+
padding_mode=PytorchPadMode.CONSTANT,
|
364 |
+
cval=0.0,
|
365 |
+
sw_device=None,
|
366 |
+
device=None,
|
367 |
+
roi_weight_map=None,
|
368 |
+
):
|
369 |
+
compute_dtype = inputs.dtype
|
370 |
+
num_spatial_dims = len(inputs.shape) - 2
|
371 |
+
batch_size, _, *image_size_ = inputs.shape
|
372 |
+
|
373 |
+
roi_size = fall_back_tuple(roi_size, image_size_)
|
374 |
+
# in case that image size is smaller than roi size
|
375 |
+
image_size = tuple(
|
376 |
+
max(image_size_[i], roi_size[i]) for i in range(num_spatial_dims)
|
377 |
+
)
|
378 |
+
pad_size = []
|
379 |
+
|
380 |
+
for k in range(len(inputs.shape) - 1, 1, -1):
|
381 |
+
diff = max(roi_size[k - 2] - inputs.shape[k], 0)
|
382 |
+
half = diff // 2
|
383 |
+
pad_size.extend([half, diff - half])
|
384 |
+
|
385 |
+
inputs = pad(
|
386 |
+
inputs,
|
387 |
+
pad=pad_size,
|
388 |
+
mode=look_up_option(padding_mode, PytorchPadMode).value,
|
389 |
+
value=cval,
|
390 |
+
)
|
391 |
+
|
392 |
+
scan_interval = _get_scan_interval(image_size, roi_size, num_spatial_dims, overlap)
|
393 |
+
|
394 |
+
# Store all slices in list
|
395 |
+
slices = dense_patch_slices(image_size, roi_size, scan_interval)
|
396 |
+
num_win = len(slices) # number of windows per image
|
397 |
+
total_slices = num_win * batch_size # total number of windows
|
398 |
+
|
399 |
+
# Create window-level importance map
|
400 |
+
valid_patch_size = get_valid_patch_size(image_size, roi_size)
|
401 |
+
if valid_patch_size == roi_size and (roi_weight_map is not None):
|
402 |
+
importance_map = roi_weight_map
|
403 |
+
else:
|
404 |
+
importance_map = compute_importance_map(
|
405 |
+
valid_patch_size, mode=mode, sigma_scale=sigma_scale, device=device
|
406 |
+
)
|
407 |
+
|
408 |
+
importance_map = convert_data_type(importance_map, torch.Tensor, device, compute_dtype)[0] # type: ignore
|
409 |
+
# handle non-positive weights
|
410 |
+
min_non_zero = max(importance_map[importance_map != 0].min().item(), 1e-3)
|
411 |
+
importance_map = torch.clamp(importance_map.to(torch.float32), min=min_non_zero).to(
|
412 |
+
compute_dtype
|
413 |
+
)
|
414 |
+
|
415 |
+
# Perform predictions
|
416 |
+
dict_key, output_image_list, count_map_list = None, [], []
|
417 |
+
_initialized_ss = -1
|
418 |
+
is_tensor_output = (
|
419 |
+
True # whether the predictor's output is a tensor (instead of dict/tuple)
|
420 |
+
)
|
421 |
+
|
422 |
+
# for each patch
|
423 |
+
for slice_g in range(0, total_slices, sw_batch_size):
|
424 |
+
slice_range = range(slice_g, min(slice_g + sw_batch_size, total_slices))
|
425 |
+
unravel_slice = [
|
426 |
+
[slice(int(idx / num_win), int(idx / num_win) + 1), slice(None)]
|
427 |
+
+ list(slices[idx % num_win])
|
428 |
+
for idx in slice_range
|
429 |
+
]
|
430 |
+
window_data = torch.cat([inputs[win_slice] for win_slice in unravel_slice]).to(
|
431 |
+
sw_device
|
432 |
+
)
|
433 |
+
seg_prob_out = predictor(window_data) # batched patch segmentation
|
434 |
+
|
435 |
+
# convert seg_prob_out to tuple seg_prob_tuple, this does not allocate new memory.
|
436 |
+
seg_prob_tuple: Tuple[torch.Tensor, ...]
|
437 |
+
if isinstance(seg_prob_out, torch.Tensor):
|
438 |
+
seg_prob_tuple = (seg_prob_out,)
|
439 |
+
elif isinstance(seg_prob_out, Mapping):
|
440 |
+
if dict_key is None:
|
441 |
+
dict_key = sorted(seg_prob_out.keys()) # track predictor's output keys
|
442 |
+
seg_prob_tuple = tuple(seg_prob_out[k] for k in dict_key)
|
443 |
+
is_tensor_output = False
|
444 |
+
else:
|
445 |
+
seg_prob_tuple = ensure_tuple(seg_prob_out)
|
446 |
+
is_tensor_output = False
|
447 |
+
|
448 |
+
# for each output in multi-output list
|
449 |
+
for ss, seg_prob in enumerate(seg_prob_tuple):
|
450 |
+
seg_prob = seg_prob.to(device) # BxCxMxNxP or BxCxMxN
|
451 |
+
|
452 |
+
# compute zoom scale: out_roi_size/in_roi_size
|
453 |
+
zoom_scale = []
|
454 |
+
for axis, (img_s_i, out_w_i, in_w_i) in enumerate(
|
455 |
+
zip(image_size, seg_prob.shape[2:], window_data.shape[2:])
|
456 |
+
):
|
457 |
+
_scale = out_w_i / float(in_w_i)
|
458 |
+
|
459 |
+
zoom_scale.append(_scale)
|
460 |
+
|
461 |
+
if _initialized_ss < ss: # init. the ss-th buffer at the first iteration
|
462 |
+
# construct multi-resolution outputs
|
463 |
+
output_classes = seg_prob.shape[1]
|
464 |
+
output_shape = [batch_size, output_classes] + [
|
465 |
+
int(image_size_d * zoom_scale_d)
|
466 |
+
for image_size_d, zoom_scale_d in zip(image_size, zoom_scale)
|
467 |
+
]
|
468 |
+
# allocate memory to store the full output and the count for overlapping parts
|
469 |
+
output_image_list.append(
|
470 |
+
torch.zeros(output_shape, dtype=compute_dtype, device=device)
|
471 |
+
)
|
472 |
+
count_map_list.append(
|
473 |
+
torch.zeros(
|
474 |
+
[1, 1] + output_shape[2:], dtype=compute_dtype, device=device
|
475 |
+
)
|
476 |
+
)
|
477 |
+
_initialized_ss += 1
|
478 |
+
|
479 |
+
# resizing the importance_map
|
480 |
+
resizer = Resize(spatial_size=seg_prob.shape[2:])
|
481 |
+
|
482 |
+
# store the result in the proper location of the full output. Apply weights from importance map.
|
483 |
+
for idx, original_idx in zip(slice_range, unravel_slice):
|
484 |
+
# zoom roi
|
485 |
+
original_idx_zoom = list(
|
486 |
+
original_idx
|
487 |
+
) # 4D for 2D image, 5D for 3D image
|
488 |
+
for axis in range(2, len(original_idx_zoom)):
|
489 |
+
zoomed_start = original_idx[axis].start * zoom_scale[axis - 2]
|
490 |
+
zoomed_end = original_idx[axis].stop * zoom_scale[axis - 2]
|
491 |
+
|
492 |
+
original_idx_zoom[axis] = slice(
|
493 |
+
int(zoomed_start), int(zoomed_end), None
|
494 |
+
)
|
495 |
+
importance_map_zoom = resizer(importance_map.unsqueeze(0))[0].to(
|
496 |
+
compute_dtype
|
497 |
+
)
|
498 |
+
# store results and weights
|
499 |
+
output_image_list[ss][original_idx_zoom] += (
|
500 |
+
importance_map_zoom * seg_prob[idx - slice_g]
|
501 |
+
)
|
502 |
+
count_map_list[ss][original_idx_zoom] += (
|
503 |
+
importance_map_zoom.unsqueeze(0)
|
504 |
+
.unsqueeze(0)
|
505 |
+
.expand(count_map_list[ss][original_idx_zoom].shape)
|
506 |
+
)
|
507 |
+
|
508 |
+
# account for any overlapping sections
|
509 |
+
for ss in range(len(output_image_list)):
|
510 |
+
output_image_list[ss] = (output_image_list[ss] / count_map_list.pop(0)).to(
|
511 |
+
compute_dtype
|
512 |
+
)
|
513 |
+
|
514 |
+
# remove padding if image_size smaller than roi_size
|
515 |
+
for ss, output_i in enumerate(output_image_list):
|
516 |
+
zoom_scale = [
|
517 |
+
seg_prob_map_shape_d / roi_size_d
|
518 |
+
for seg_prob_map_shape_d, roi_size_d in zip(output_i.shape[2:], roi_size)
|
519 |
+
]
|
520 |
+
|
521 |
+
final_slicing: List[slice] = []
|
522 |
+
for sp in range(num_spatial_dims):
|
523 |
+
slice_dim = slice(
|
524 |
+
pad_size[sp * 2],
|
525 |
+
image_size_[num_spatial_dims - sp - 1] + pad_size[sp * 2],
|
526 |
+
)
|
527 |
+
slice_dim = slice(
|
528 |
+
int(round(slice_dim.start * zoom_scale[num_spatial_dims - sp - 1])),
|
529 |
+
int(round(slice_dim.stop * zoom_scale[num_spatial_dims - sp - 1])),
|
530 |
+
)
|
531 |
+
final_slicing.insert(0, slice_dim)
|
532 |
+
while len(final_slicing) < len(output_i.shape):
|
533 |
+
final_slicing.insert(0, slice(None))
|
534 |
+
output_image_list[ss] = output_i[final_slicing]
|
535 |
+
|
536 |
+
if dict_key is not None: # if output of predictor is a dict
|
537 |
+
final_output = dict(zip(dict_key, output_image_list))
|
538 |
+
else:
|
539 |
+
final_output = tuple(output_image_list) # type: ignore
|
540 |
+
|
541 |
+
return final_output[0] if is_tensor_output else final_output # type: ignore
|
542 |
+
|
543 |
+
|
544 |
+
def _get_scan_interval(
|
545 |
+
image_size, roi_size, num_spatial_dims: int, overlap: float
|
546 |
+
) -> Tuple[int, ...]:
|
547 |
+
scan_interval = []
|
548 |
+
|
549 |
+
for i in range(num_spatial_dims):
|
550 |
+
if roi_size[i] == image_size[i]:
|
551 |
+
scan_interval.append(int(roi_size[i]))
|
552 |
+
else:
|
553 |
+
interval = int(roi_size[i] * (1 - overlap))
|
554 |
+
scan_interval.append(interval if interval > 0 else 1)
|
555 |
+
|
556 |
+
return tuple(scan_interval)
|
557 |
+
|
558 |
+
|
559 |
+
#####################################################################################
|
560 |
+
|
561 |
+
########################### Main Inference Functions #################################
|
562 |
+
def post_process(pred_mask, device):
|
563 |
+
dP, cellprob = pred_mask[:2], 1 / (1 + np.exp(-pred_mask[-1]))
|
564 |
+
H, W = pred_mask.shape[-2], pred_mask.shape[-1]
|
565 |
+
|
566 |
+
if np.prod(H * W) < (5000 * 5000):
|
567 |
+
pred_mask = compute_masks(
|
568 |
+
dP,
|
569 |
+
cellprob,
|
570 |
+
use_gpu=True,
|
571 |
+
flow_threshold=0.4,
|
572 |
+
device=device,
|
573 |
+
cellprob_threshold=0.4,
|
574 |
+
)[0]
|
575 |
+
|
576 |
+
else:
|
577 |
+
print("\n[Whole Slide] Grid Prediction starting...")
|
578 |
+
roi_size = 2000
|
579 |
+
|
580 |
+
# Get patch grid by roi_size
|
581 |
+
if H % roi_size != 0:
|
582 |
+
n_H = H // roi_size + 1
|
583 |
+
new_H = roi_size * n_H
|
584 |
+
else:
|
585 |
+
n_H = H // roi_size
|
586 |
+
new_H = H
|
587 |
+
|
588 |
+
if W % roi_size != 0:
|
589 |
+
n_W = W // roi_size + 1
|
590 |
+
new_W = roi_size * n_W
|
591 |
+
else:
|
592 |
+
n_W = W // roi_size
|
593 |
+
new_W = W
|
594 |
+
|
595 |
+
# Allocate values on the grid
|
596 |
+
pred_pad = np.zeros((new_H, new_W), dtype=np.uint32)
|
597 |
+
dP_pad = np.zeros((2, new_H, new_W), dtype=np.float32)
|
598 |
+
cellprob_pad = np.zeros((new_H, new_W), dtype=np.float32)
|
599 |
+
|
600 |
+
dP_pad[:, :H, :W], cellprob_pad[:H, :W] = dP, cellprob
|
601 |
+
|
602 |
+
for i in range(n_H):
|
603 |
+
for j in range(n_W):
|
604 |
+
print("Pred on Grid (%d, %d) processing..." % (i, j))
|
605 |
+
dP_roi = dP_pad[
|
606 |
+
:,
|
607 |
+
roi_size * i : roi_size * (i + 1),
|
608 |
+
roi_size * j : roi_size * (j + 1),
|
609 |
+
]
|
610 |
+
cellprob_roi = cellprob_pad[
|
611 |
+
roi_size * i : roi_size * (i + 1),
|
612 |
+
roi_size * j : roi_size * (j + 1),
|
613 |
+
]
|
614 |
+
|
615 |
+
pred_mask = compute_masks(
|
616 |
+
dP_roi,
|
617 |
+
cellprob_roi,
|
618 |
+
use_gpu=True,
|
619 |
+
flow_threshold=0.4,
|
620 |
+
device=device,
|
621 |
+
cellprob_threshold=0.4,
|
622 |
+
)[0]
|
623 |
+
|
624 |
+
pred_pad[
|
625 |
+
roi_size * i : roi_size * (i + 1),
|
626 |
+
roi_size * j : roi_size * (j + 1),
|
627 |
+
] = pred_mask
|
628 |
+
|
629 |
+
pred_mask = pred_pad[:H, :W]
|
630 |
+
|
631 |
+
cell_idx, cell_sizes = np.unique(pred_mask, return_counts=True)
|
632 |
+
cell_idx, cell_sizes = cell_idx[1:], cell_sizes[1:]
|
633 |
+
cell_drop = np.where(cell_sizes < np.mean(cell_sizes) - 2.7 * np.std(cell_sizes))
|
634 |
+
|
635 |
+
for drop_cell in cell_idx[cell_drop]:
|
636 |
+
pred_mask[pred_mask == drop_cell] = 0
|
637 |
+
|
638 |
+
return pred_mask
|
639 |
+
|
640 |
+
|
641 |
+
def hflip(x):
|
642 |
+
"""flip batch of images horizontally"""
|
643 |
+
return x.flip(3)
|
644 |
+
|
645 |
+
|
646 |
+
def vflip(x):
|
647 |
+
"""flip batch of images vertically"""
|
648 |
+
return x.flip(2)
|
649 |
+
|
650 |
+
|
651 |
+
class DualTransform:
|
652 |
+
identity_param = None
|
653 |
+
|
654 |
+
def __init__(
|
655 |
+
self, name: str, params,
|
656 |
+
):
|
657 |
+
self.params = params
|
658 |
+
self.pname = name
|
659 |
+
|
660 |
+
def apply_aug_image(self, image, *args, **params):
|
661 |
+
raise NotImplementedError
|
662 |
+
|
663 |
+
def apply_deaug_mask(self, mask, *args, **params):
|
664 |
+
raise NotImplementedError
|
665 |
+
|
666 |
+
|
667 |
+
class HorizontalFlip(DualTransform):
|
668 |
+
"""Flip images horizontally (left->right)"""
|
669 |
+
|
670 |
+
identity_param = False
|
671 |
+
|
672 |
+
def __init__(self):
|
673 |
+
super().__init__("apply", [False, True])
|
674 |
+
|
675 |
+
def apply_aug_image(self, image, apply=False, **kwargs):
|
676 |
+
if apply:
|
677 |
+
image = hflip(image)
|
678 |
+
return image
|
679 |
+
|
680 |
+
def apply_deaug_mask(self, mask, apply=False, **kwargs):
|
681 |
+
if apply:
|
682 |
+
mask = hflip(mask)
|
683 |
+
return mask
|
684 |
+
|
685 |
+
|
686 |
+
class VerticalFlip(DualTransform):
|
687 |
+
"""Flip images vertically (up->down)"""
|
688 |
+
|
689 |
+
identity_param = False
|
690 |
+
|
691 |
+
def __init__(self):
|
692 |
+
super().__init__("apply", [False, True])
|
693 |
+
|
694 |
+
def apply_aug_image(self, image, apply=False, **kwargs):
|
695 |
+
if apply:
|
696 |
+
image = vflip(image)
|
697 |
+
return image
|
698 |
+
|
699 |
+
def apply_deaug_mask(self, mask, apply=False, **kwargs):
|
700 |
+
if apply:
|
701 |
+
mask = vflip(mask)
|
702 |
+
return mask
|
703 |
+
|
704 |
+
|
705 |
+
#################### GradFlow Modules ##################################################
|
706 |
+
from scipy.ndimage.filters import maximum_filter1d
|
707 |
+
import scipy.ndimage
|
708 |
+
import fastremap
|
709 |
+
from skimage import morphology
|
710 |
+
|
711 |
+
from scipy.ndimage import mean
|
712 |
+
|
713 |
+
torch_GPU = torch.device("cuda")
|
714 |
+
torch_CPU = torch.device("cpu")
|
715 |
+
|
716 |
+
|
717 |
+
def _extend_centers_gpu(
|
718 |
+
neighbors, centers, isneighbor, Ly, Lx, n_iter=200, device=torch.device("cuda")
|
719 |
+
):
|
720 |
+
if device is not None:
|
721 |
+
device = device
|
722 |
+
nimg = neighbors.shape[0] // 9
|
723 |
+
pt = torch.from_numpy(neighbors).to(device)
|
724 |
+
|
725 |
+
T = torch.zeros((nimg, Ly, Lx), dtype=torch.double, device=device)
|
726 |
+
meds = torch.from_numpy(centers.astype(int)).to(device).long()
|
727 |
+
isneigh = torch.from_numpy(isneighbor).to(device)
|
728 |
+
for i in range(n_iter):
|
729 |
+
T[:, meds[:, 0], meds[:, 1]] += 1
|
730 |
+
Tneigh = T[:, pt[:, :, 0], pt[:, :, 1]]
|
731 |
+
Tneigh *= isneigh
|
732 |
+
T[:, pt[0, :, 0], pt[0, :, 1]] = Tneigh.mean(axis=1)
|
733 |
+
del meds, isneigh, Tneigh
|
734 |
+
T = torch.log(1.0 + T)
|
735 |
+
# gradient positions
|
736 |
+
grads = T[:, pt[[2, 1, 4, 3], :, 0], pt[[2, 1, 4, 3], :, 1]]
|
737 |
+
del pt
|
738 |
+
dy = grads[:, 0] - grads[:, 1]
|
739 |
+
dx = grads[:, 2] - grads[:, 3]
|
740 |
+
del grads
|
741 |
+
mu_torch = np.stack((dy.cpu().squeeze(), dx.cpu().squeeze()), axis=-2)
|
742 |
+
return mu_torch
|
743 |
+
|
744 |
+
|
745 |
+
def diameters(masks):
|
746 |
+
_, counts = np.unique(np.int32(masks), return_counts=True)
|
747 |
+
counts = counts[1:]
|
748 |
+
md = np.median(counts ** 0.5)
|
749 |
+
if np.isnan(md):
|
750 |
+
md = 0
|
751 |
+
md /= (np.pi ** 0.5) / 2
|
752 |
+
return md, counts ** 0.5
|
753 |
+
|
754 |
+
|
755 |
+
def masks_to_flows_gpu(masks, device=None):
|
756 |
+
if device is None:
|
757 |
+
device = torch.device("cuda")
|
758 |
+
|
759 |
+
Ly0, Lx0 = masks.shape
|
760 |
+
Ly, Lx = Ly0 + 2, Lx0 + 2
|
761 |
+
|
762 |
+
masks_padded = np.zeros((Ly, Lx), np.int64)
|
763 |
+
masks_padded[1:-1, 1:-1] = masks
|
764 |
+
|
765 |
+
# get mask pixel neighbors
|
766 |
+
y, x = np.nonzero(masks_padded)
|
767 |
+
neighborsY = np.stack((y, y - 1, y + 1, y, y, y - 1, y - 1, y + 1, y + 1), axis=0)
|
768 |
+
neighborsX = np.stack((x, x, x, x - 1, x + 1, x - 1, x + 1, x - 1, x + 1), axis=0)
|
769 |
+
neighbors = np.stack((neighborsY, neighborsX), axis=-1)
|
770 |
+
|
771 |
+
# get mask centers
|
772 |
+
slices = scipy.ndimage.find_objects(masks)
|
773 |
+
|
774 |
+
centers = np.zeros((masks.max(), 2), "int")
|
775 |
+
for i, si in enumerate(slices):
|
776 |
+
if si is not None:
|
777 |
+
sr, sc = si
|
778 |
+
|
779 |
+
ly, lx = sr.stop - sr.start + 1, sc.stop - sc.start + 1
|
780 |
+
yi, xi = np.nonzero(masks[sr, sc] == (i + 1))
|
781 |
+
yi = yi.astype(np.int32) + 1 # add padding
|
782 |
+
xi = xi.astype(np.int32) + 1 # add padding
|
783 |
+
ymed = np.median(yi)
|
784 |
+
xmed = np.median(xi)
|
785 |
+
imin = np.argmin((xi - xmed) ** 2 + (yi - ymed) ** 2)
|
786 |
+
xmed = xi[imin]
|
787 |
+
ymed = yi[imin]
|
788 |
+
centers[i, 0] = ymed + sr.start
|
789 |
+
centers[i, 1] = xmed + sc.start
|
790 |
+
|
791 |
+
# get neighbor validator (not all neighbors are in same mask)
|
792 |
+
neighbor_masks = masks_padded[neighbors[:, :, 0], neighbors[:, :, 1]]
|
793 |
+
isneighbor = neighbor_masks == neighbor_masks[0]
|
794 |
+
ext = np.array(
|
795 |
+
[[sr.stop - sr.start + 1, sc.stop - sc.start + 1] for sr, sc in slices]
|
796 |
+
)
|
797 |
+
n_iter = 2 * (ext.sum(axis=1)).max()
|
798 |
+
# run diffusion
|
799 |
+
mu = _extend_centers_gpu(
|
800 |
+
neighbors, centers, isneighbor, Ly, Lx, n_iter=n_iter, device=device
|
801 |
+
)
|
802 |
+
|
803 |
+
# normalize
|
804 |
+
mu /= 1e-20 + (mu ** 2).sum(axis=0) ** 0.5
|
805 |
+
|
806 |
+
# put into original image
|
807 |
+
mu0 = np.zeros((2, Ly0, Lx0))
|
808 |
+
mu0[:, y - 1, x - 1] = mu
|
809 |
+
mu_c = np.zeros_like(mu0)
|
810 |
+
return mu0, mu_c
|
811 |
+
|
812 |
+
|
813 |
+
def masks_to_flows(masks, use_gpu=False, device=None):
|
814 |
+
if masks.max() == 0 or (masks != 0).sum() == 1:
|
815 |
+
# dynamics_logger.warning('empty masks!')
|
816 |
+
return np.zeros((2, *masks.shape), "float32")
|
817 |
+
|
818 |
+
if use_gpu:
|
819 |
+
if use_gpu and device is None:
|
820 |
+
device = torch_GPU
|
821 |
+
elif device is None:
|
822 |
+
device = torch_CPU
|
823 |
+
masks_to_flows_device = masks_to_flows_gpu
|
824 |
+
|
825 |
+
if masks.ndim == 3:
|
826 |
+
Lz, Ly, Lx = masks.shape
|
827 |
+
mu = np.zeros((3, Lz, Ly, Lx), np.float32)
|
828 |
+
for z in range(Lz):
|
829 |
+
mu0 = masks_to_flows_device(masks[z], device=device)[0]
|
830 |
+
mu[[1, 2], z] += mu0
|
831 |
+
for y in range(Ly):
|
832 |
+
mu0 = masks_to_flows_device(masks[:, y], device=device)[0]
|
833 |
+
mu[[0, 2], :, y] += mu0
|
834 |
+
for x in range(Lx):
|
835 |
+
mu0 = masks_to_flows_device(masks[:, :, x], device=device)[0]
|
836 |
+
mu[[0, 1], :, :, x] += mu0
|
837 |
+
return mu
|
838 |
+
elif masks.ndim == 2:
|
839 |
+
mu, mu_c = masks_to_flows_device(masks, device=device)
|
840 |
+
return mu
|
841 |
+
|
842 |
+
else:
|
843 |
+
raise ValueError("masks_to_flows only takes 2D or 3D arrays")
|
844 |
+
|
845 |
+
|
846 |
+
def steps2D_interp(p, dP, niter, use_gpu=False, device=None):
|
847 |
+
shape = dP.shape[1:]
|
848 |
+
if use_gpu:
|
849 |
+
if device is None:
|
850 |
+
device = torch_GPU
|
851 |
+
shape = (
|
852 |
+
np.array(shape)[[1, 0]].astype("float") - 1
|
853 |
+
) # Y and X dimensions (dP is 2.Ly.Lx), flipped X-1, Y-1
|
854 |
+
pt = (
|
855 |
+
torch.from_numpy(p[[1, 0]].T).float().to(device).unsqueeze(0).unsqueeze(0)
|
856 |
+
) # p is n_points by 2, so pt is [1 1 2 n_points]
|
857 |
+
im = (
|
858 |
+
torch.from_numpy(dP[[1, 0]]).float().to(device).unsqueeze(0)
|
859 |
+
) # covert flow numpy array to tensor on GPU, add dimension
|
860 |
+
# normalize pt between 0 and 1, normalize the flow
|
861 |
+
for k in range(2):
|
862 |
+
im[:, k, :, :] *= 2.0 / shape[k]
|
863 |
+
pt[:, :, :, k] /= shape[k]
|
864 |
+
|
865 |
+
# normalize to between -1 and 1
|
866 |
+
pt = pt * 2 - 1
|
867 |
+
|
868 |
+
# here is where the stepping happens
|
869 |
+
for t in range(niter):
|
870 |
+
# align_corners default is False, just added to suppress warning
|
871 |
+
dPt = grid_sample(im, pt, align_corners=False)
|
872 |
+
|
873 |
+
for k in range(2): # clamp the final pixel locations
|
874 |
+
pt[:, :, :, k] = torch.clamp(
|
875 |
+
pt[:, :, :, k] + dPt[:, k, :, :], -1.0, 1.0
|
876 |
+
)
|
877 |
+
|
878 |
+
# undo the normalization from before, reverse order of operations
|
879 |
+
pt = (pt + 1) * 0.5
|
880 |
+
for k in range(2):
|
881 |
+
pt[:, :, :, k] *= shape[k]
|
882 |
+
|
883 |
+
p = pt[:, :, :, [1, 0]].cpu().numpy().squeeze().T
|
884 |
+
return p
|
885 |
+
|
886 |
+
else:
|
887 |
+
assert print("ho")
|
888 |
+
|
889 |
+
|
890 |
+
def follow_flows(dP, mask=None, niter=200, interp=True, use_gpu=True, device=None):
|
891 |
+
shape = np.array(dP.shape[1:]).astype(np.int32)
|
892 |
+
niter = np.uint32(niter)
|
893 |
+
|
894 |
+
p = np.meshgrid(np.arange(shape[0]), np.arange(shape[1]), indexing="ij")
|
895 |
+
p = np.array(p).astype(np.float32)
|
896 |
+
|
897 |
+
inds = np.array(np.nonzero(np.abs(dP[0]) > 1e-3)).astype(np.int32).T
|
898 |
+
|
899 |
+
if inds.ndim < 2 or inds.shape[0] < 5:
|
900 |
+
return p, None
|
901 |
+
|
902 |
+
if not interp:
|
903 |
+
assert print("woo")
|
904 |
+
|
905 |
+
else:
|
906 |
+
p_interp = steps2D_interp(
|
907 |
+
p[:, inds[:, 0], inds[:, 1]], dP, niter, use_gpu=use_gpu, device=device
|
908 |
+
)
|
909 |
+
p[:, inds[:, 0], inds[:, 1]] = p_interp
|
910 |
+
|
911 |
+
return p, inds
|
912 |
+
|
913 |
+
|
914 |
+
def flow_error(maski, dP_net, use_gpu=False, device=None):
|
915 |
+
if dP_net.shape[1:] != maski.shape:
|
916 |
+
print("ERROR: net flow is not same size as predicted masks")
|
917 |
+
return
|
918 |
+
|
919 |
+
# flows predicted from estimated masks
|
920 |
+
dP_masks = masks_to_flows(maski, use_gpu=use_gpu, device=device)
|
921 |
+
# difference between predicted flows vs mask flows
|
922 |
+
flow_errors = np.zeros(maski.max())
|
923 |
+
for i in range(dP_masks.shape[0]):
|
924 |
+
flow_errors += mean(
|
925 |
+
(dP_masks[i] - dP_net[i] / 5.0) ** 2,
|
926 |
+
maski,
|
927 |
+
index=np.arange(1, maski.max() + 1),
|
928 |
+
)
|
929 |
+
|
930 |
+
return flow_errors, dP_masks
|
931 |
+
|
932 |
+
|
933 |
+
def remove_bad_flow_masks(masks, flows, threshold=0.4, use_gpu=False, device=None):
|
934 |
+
merrors, _ = flow_error(masks, flows, use_gpu, device)
|
935 |
+
badi = 1 + (merrors > threshold).nonzero()[0]
|
936 |
+
masks[np.isin(masks, badi)] = 0
|
937 |
+
return masks
|
938 |
+
|
939 |
+
|
940 |
+
def get_masks(p, iscell=None, rpad=20):
|
941 |
+
pflows = []
|
942 |
+
edges = []
|
943 |
+
shape0 = p.shape[1:]
|
944 |
+
dims = len(p)
|
945 |
+
|
946 |
+
for i in range(dims):
|
947 |
+
pflows.append(p[i].flatten().astype("int32"))
|
948 |
+
edges.append(np.arange(-0.5 - rpad, shape0[i] + 0.5 + rpad, 1))
|
949 |
+
|
950 |
+
h, _ = np.histogramdd(tuple(pflows), bins=edges)
|
951 |
+
hmax = h.copy()
|
952 |
+
for i in range(dims):
|
953 |
+
hmax = maximum_filter1d(hmax, 5, axis=i)
|
954 |
+
|
955 |
+
seeds = np.nonzero(np.logical_and(h - hmax > -1e-6, h > 10))
|
956 |
+
Nmax = h[seeds]
|
957 |
+
isort = np.argsort(Nmax)[::-1]
|
958 |
+
for s in seeds:
|
959 |
+
s = s[isort]
|
960 |
+
|
961 |
+
pix = list(np.array(seeds).T)
|
962 |
+
|
963 |
+
shape = h.shape
|
964 |
+
if dims == 3:
|
965 |
+
expand = np.nonzero(np.ones((3, 3, 3)))
|
966 |
+
else:
|
967 |
+
expand = np.nonzero(np.ones((3, 3)))
|
968 |
+
for e in expand:
|
969 |
+
e = np.expand_dims(e, 1)
|
970 |
+
|
971 |
+
for iter in range(5):
|
972 |
+
for k in range(len(pix)):
|
973 |
+
if iter == 0:
|
974 |
+
pix[k] = list(pix[k])
|
975 |
+
newpix = []
|
976 |
+
iin = []
|
977 |
+
for i, e in enumerate(expand):
|
978 |
+
epix = e[:, np.newaxis] + np.expand_dims(pix[k][i], 0) - 1
|
979 |
+
epix = epix.flatten()
|
980 |
+
iin.append(np.logical_and(epix >= 0, epix < shape[i]))
|
981 |
+
newpix.append(epix)
|
982 |
+
iin = np.all(tuple(iin), axis=0)
|
983 |
+
for p in newpix:
|
984 |
+
p = p[iin]
|
985 |
+
newpix = tuple(newpix)
|
986 |
+
igood = h[newpix] > 2
|
987 |
+
for i in range(dims):
|
988 |
+
pix[k][i] = newpix[i][igood]
|
989 |
+
if iter == 4:
|
990 |
+
pix[k] = tuple(pix[k])
|
991 |
+
|
992 |
+
M = np.zeros(h.shape, np.uint32)
|
993 |
+
for k in range(len(pix)):
|
994 |
+
M[pix[k]] = 1 + k
|
995 |
+
|
996 |
+
for i in range(dims):
|
997 |
+
pflows[i] = pflows[i] + rpad
|
998 |
+
M0 = M[tuple(pflows)]
|
999 |
+
|
1000 |
+
# remove big masks
|
1001 |
+
uniq, counts = fastremap.unique(M0, return_counts=True)
|
1002 |
+
big = np.prod(shape0) * 0.9
|
1003 |
+
bigc = uniq[counts > big]
|
1004 |
+
if len(bigc) > 0 and (len(bigc) > 1 or bigc[0] != 0):
|
1005 |
+
M0 = fastremap.mask(M0, bigc)
|
1006 |
+
fastremap.renumber(M0, in_place=True) # convenient to guarantee non-skipped labels
|
1007 |
+
M0 = np.reshape(M0, shape0)
|
1008 |
+
return M0
|
1009 |
+
|
1010 |
+
def fill_holes_and_remove_small_masks(masks, min_size=15):
|
1011 |
+
""" fill holes in masks (2D/3D) and discard masks smaller than min_size (2D)
|
1012 |
+
|
1013 |
+
fill holes in each mask using scipy.ndimage.morphology.binary_fill_holes
|
1014 |
+
(might have issues at borders between cells, todo: check and fix)
|
1015 |
+
|
1016 |
+
Parameters
|
1017 |
+
----------------
|
1018 |
+
masks: int, 2D or 3D array
|
1019 |
+
labelled masks, 0=NO masks; 1,2,...=mask labels,
|
1020 |
+
size [Ly x Lx] or [Lz x Ly x Lx]
|
1021 |
+
min_size: int (optional, default 15)
|
1022 |
+
minimum number of pixels per mask, can turn off with -1
|
1023 |
+
Returns
|
1024 |
+
---------------
|
1025 |
+
masks: int, 2D or 3D array
|
1026 |
+
masks with holes filled and masks smaller than min_size removed,
|
1027 |
+
0=NO masks; 1,2,...=mask labels,
|
1028 |
+
size [Ly x Lx] or [Lz x Ly x Lx]
|
1029 |
+
|
1030 |
+
"""
|
1031 |
+
|
1032 |
+
slices = find_objects(masks)
|
1033 |
+
j = 0
|
1034 |
+
for i,slc in enumerate(slices):
|
1035 |
+
if slc is not None:
|
1036 |
+
msk = masks[slc] == (i+1)
|
1037 |
+
npix = msk.sum()
|
1038 |
+
if min_size > 0 and npix < min_size:
|
1039 |
+
masks[slc][msk] = 0
|
1040 |
+
elif npix > 0:
|
1041 |
+
if msk.ndim==3:
|
1042 |
+
for k in range(msk.shape[0]):
|
1043 |
+
msk[k] = binary_fill_holes(msk[k])
|
1044 |
+
else:
|
1045 |
+
msk = binary_fill_holes(msk)
|
1046 |
+
masks[slc][msk] = (j+1)
|
1047 |
+
j+=1
|
1048 |
+
return masks
|
1049 |
+
|
1050 |
+
def compute_masks(
|
1051 |
+
dP,
|
1052 |
+
cellprob,
|
1053 |
+
p=None,
|
1054 |
+
niter=200,
|
1055 |
+
cellprob_threshold=0.4,
|
1056 |
+
flow_threshold=0.4,
|
1057 |
+
interp=True,
|
1058 |
+
resize=None,
|
1059 |
+
use_gpu=False,
|
1060 |
+
device=None,
|
1061 |
+
):
|
1062 |
+
"""compute masks using dynamics from dP, cellprob, and boundary"""
|
1063 |
+
|
1064 |
+
cp_mask = cellprob > cellprob_threshold
|
1065 |
+
cp_mask = morphology.remove_small_holes(cp_mask, area_threshold=16)
|
1066 |
+
cp_mask = morphology.remove_small_objects(cp_mask, min_size=16)
|
1067 |
+
|
1068 |
+
if np.any(cp_mask): # mask at this point is a cell cluster binary map, not labels
|
1069 |
+
# follow flows
|
1070 |
+
if p is None:
|
1071 |
+
p, inds = follow_flows(
|
1072 |
+
dP * cp_mask / 5.0,
|
1073 |
+
niter=niter,
|
1074 |
+
interp=interp,
|
1075 |
+
use_gpu=use_gpu,
|
1076 |
+
device=device,
|
1077 |
+
)
|
1078 |
+
if inds is None:
|
1079 |
+
shape = resize if resize is not None else cellprob.shape
|
1080 |
+
mask = np.zeros(shape, np.uint16)
|
1081 |
+
p = np.zeros((len(shape), *shape), np.uint16)
|
1082 |
+
return mask, p
|
1083 |
+
|
1084 |
+
# calculate masks
|
1085 |
+
mask = get_masks(p, iscell=cp_mask)
|
1086 |
+
|
1087 |
+
# flow thresholding factored out of get_masks
|
1088 |
+
shape0 = p.shape[1:]
|
1089 |
+
if mask.max() > 0 and flow_threshold is not None and flow_threshold > 0:
|
1090 |
+
# make sure labels are unique at output of get_masks
|
1091 |
+
mask = remove_bad_flow_masks(
|
1092 |
+
mask, dP, threshold=flow_threshold, use_gpu=use_gpu, device=device
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
mask = fill_holes_and_remove_small_masks(mask, min_size=15)
|
1096 |
+
|
1097 |
+
else: # nothing to compute, just make it compatible
|
1098 |
+
shape = resize if resize is not None else cellprob.shape
|
1099 |
+
mask = np.zeros(shape, np.uint16)
|
1100 |
+
p = np.zeros((len(shape), *shape), np.uint16)
|
1101 |
+
return mask, p
|
1102 |
+
|
1103 |
+
return mask, p
|
1104 |
+
|
1105 |
+
def predict(img):
|
1106 |
+
# Dataset parameters
|
1107 |
+
### for huggingface space
|
1108 |
+
device = "cpu"
|
1109 |
+
model_path = "./main_model.pt"
|
1110 |
+
model_path2 = "./sub_model.pth"
|
1111 |
+
###
|
1112 |
+
model = torch.load(model_path, map_location=device)
|
1113 |
+
model.eval()
|
1114 |
+
hflip_tta = HorizontalFlip()
|
1115 |
+
vflip_tta = VerticalFlip()
|
1116 |
+
|
1117 |
+
img_name = img.name
|
1118 |
+
# if img_name.endswith('.tif') or img_name.endswith('.tiff'):
|
1119 |
+
# img_data = tif.imread(img_name)
|
1120 |
+
# else:
|
1121 |
+
# img_data = io.imread(img_name)
|
1122 |
+
|
1123 |
+
img_data = pred_transforms(img_name)
|
1124 |
+
img_data = img_data.to(device)
|
1125 |
+
img_size = img_data.shape[-1] * img_data.shape[-2]
|
1126 |
+
|
1127 |
+
if img_size < 1150000 and 900000 < img_size:
|
1128 |
+
overlap = 0.5
|
1129 |
+
else:
|
1130 |
+
overlap = 0.6
|
1131 |
+
|
1132 |
+
with torch.no_grad():
|
1133 |
+
img0 = img_data
|
1134 |
+
outputs0 = sliding_window_inference(
|
1135 |
+
img0,
|
1136 |
+
512,
|
1137 |
+
4,
|
1138 |
+
model,
|
1139 |
+
padding_mode="reflect",
|
1140 |
+
mode="gaussian",
|
1141 |
+
overlap=overlap,
|
1142 |
+
device="cpu",
|
1143 |
+
)
|
1144 |
+
outputs0 = outputs0.cpu().squeeze()
|
1145 |
+
|
1146 |
+
if img_size < 2000 * 2000:
|
1147 |
+
|
1148 |
+
model.load_state_dict(torch.load(model_path2, map_location=device))
|
1149 |
+
model.eval()
|
1150 |
+
|
1151 |
+
img2 = hflip_tta.apply_aug_image(img_data, apply=True)
|
1152 |
+
outputs2 = sliding_window_inference(
|
1153 |
+
img2,
|
1154 |
+
512,
|
1155 |
+
4,
|
1156 |
+
model,
|
1157 |
+
padding_mode="reflect",
|
1158 |
+
mode="gauusian",
|
1159 |
+
overlap=overlap,
|
1160 |
+
device="cpu",
|
1161 |
+
)
|
1162 |
+
outputs2 = hflip_tta.apply_deaug_mask(outputs2, apply=True)
|
1163 |
+
outputs2 = outputs2.cpu().squeeze()
|
1164 |
+
|
1165 |
+
outputs = torch.zeros_like(outputs0)
|
1166 |
+
outputs[0] = (outputs0[0] + outputs2[0]) / 2
|
1167 |
+
outputs[1] = (outputs0[1] - outputs2[1]) / 2
|
1168 |
+
outputs[2] = (outputs0[2] + outputs2[2]) / 2
|
1169 |
+
|
1170 |
+
elif img_size < 5000*5000:
|
1171 |
+
# Hflip TTA
|
1172 |
+
img2 = hflip_tta.apply_aug_image(img_data, apply=True)
|
1173 |
+
outputs2 = sliding_window_inference(
|
1174 |
+
img2,
|
1175 |
+
512,
|
1176 |
+
4,
|
1177 |
+
model,
|
1178 |
+
padding_mode="reflect",
|
1179 |
+
mode="gaussian",
|
1180 |
+
overlap=overlap,
|
1181 |
+
device="cpu",
|
1182 |
+
)
|
1183 |
+
outputs2 = hflip_tta.apply_deaug_mask(outputs2, apply=True)
|
1184 |
+
outputs2 = outputs2.cpu().squeeze()
|
1185 |
+
img2 = img2.cpu()
|
1186 |
+
|
1187 |
+
##################
|
1188 |
+
# #
|
1189 |
+
# ensemble #
|
1190 |
+
# #
|
1191 |
+
##################
|
1192 |
+
|
1193 |
+
model.load_state_dict(torch.load(model_path2, map_location=device))
|
1194 |
+
model.eval()
|
1195 |
+
|
1196 |
+
img1 = img_data
|
1197 |
+
outputs1 = sliding_window_inference(
|
1198 |
+
img1,
|
1199 |
+
512,
|
1200 |
+
4,
|
1201 |
+
model,
|
1202 |
+
padding_mode="reflect",
|
1203 |
+
mode="gaussian",
|
1204 |
+
overlap=overlap,
|
1205 |
+
device="cpu",
|
1206 |
+
)
|
1207 |
+
outputs1 = outputs1.cpu().squeeze()
|
1208 |
+
|
1209 |
+
# Vflip TTA
|
1210 |
+
img3 = vflip_tta.apply_aug_image(img_data, apply=True)
|
1211 |
+
outputs3 = sliding_window_inference(
|
1212 |
+
img3,
|
1213 |
+
512,
|
1214 |
+
4,
|
1215 |
+
model,
|
1216 |
+
padding_mode="reflect",
|
1217 |
+
mode="gaussian",
|
1218 |
+
overlap=overlap,
|
1219 |
+
device="cpu",
|
1220 |
+
)
|
1221 |
+
outputs3 = vflip_tta.apply_deaug_mask(outputs3, apply=True)
|
1222 |
+
outputs3 = outputs3.cpu().squeeze()
|
1223 |
+
img3 = img3.cpu()
|
1224 |
+
|
1225 |
+
# Merge Results
|
1226 |
+
outputs = torch.zeros_like(outputs0)
|
1227 |
+
outputs[0] = (outputs0[0] + outputs1[0] + outputs2[0] - outputs3[0]) / 4
|
1228 |
+
outputs[1] = (outputs0[1] + outputs1[1] - outputs2[1] + outputs3[1]) / 4
|
1229 |
+
outputs[2] = (outputs0[2] + outputs1[2] + outputs2[2] + outputs3[2]) / 4
|
1230 |
+
else:
|
1231 |
+
outputs = outputs0
|
1232 |
+
|
1233 |
+
pred_mask = post_process(outputs.squeeze(0).cpu().numpy(), device)
|
1234 |
+
|
1235 |
+
file_path = os.path.join(
|
1236 |
+
os.getcwd(), img_name.split(".")[0] + "_label.tiff"
|
1237 |
+
)
|
1238 |
+
|
1239 |
+
tif.imwrite(file_path, pred_mask, compression="zlib")
|
1240 |
+
# return img_data, seg_rgb, join(os.getcwd(), 'segmentation.tiff')
|
1241 |
+
return img_data, pred_mask, file_path
|
1242 |
+
|
1243 |
+
demo = gr.Interface(
|
1244 |
+
predict,
|
1245 |
+
# inputs=[gr.Image()],
|
1246 |
+
# inputs="file",
|
1247 |
+
inputs=[gr.File(label="input image")],
|
1248 |
+
outputs=[gr.Image(label="image"), gr.Image(label="segmentation"), gr.File(label="download segmentation")],
|
1249 |
+
title="NeurIPS Cellseg MEDIAR",
|
1250 |
+
)
|
1251 |
+
demo.launch()
|