from ._base import EncoderMixin from timm.models.resnet import ResNet from timm.models.resnest import ResNestBottleneck import torch.nn as nn class ResNestEncoder(ResNet, EncoderMixin): def __init__(self, out_channels, depth=5, **kwargs): super().__init__(**kwargs) self._depth = depth self._out_channels = out_channels self._in_channels = 3 del self.fc del self.global_pool def get_stages(self): return [ nn.Identity(), nn.Sequential(self.conv1, self.bn1, self.act1), nn.Sequential(self.maxpool, self.layer1), self.layer2, self.layer3, self.layer4, ] def make_dilated(self, *args, **kwargs): raise ValueError("ResNest encoders do not support dilated mode") def forward(self, x): stages = self.get_stages() features = [] for i in range(self._depth + 1): x = stages[i](x) features.append(x) return features def load_state_dict(self, state_dict, **kwargs): state_dict.pop("fc.bias", None) state_dict.pop("fc.weight", None) super().load_state_dict(state_dict, **kwargs) resnest_weights = { "timm-resnest14d": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest14-9c8fe254.pth", # noqa }, "timm-resnest26d": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/gluon_resnest26-50eb607c.pth", # noqa }, "timm-resnest50d": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50-528c19ca.pth", # noqa }, "timm-resnest101e": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest101-22405ba7.pth", # noqa }, "timm-resnest200e": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest200-75117900.pth", # noqa }, "timm-resnest269e": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest269-0cc87c48.pth", # noqa }, "timm-resnest50d_4s2x40d": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_4s2x40d-41d14ed0.pth", # noqa }, "timm-resnest50d_1s4x24d": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-resnest/resnest50_fast_1s4x24d-d4a4f76f.pth", # noqa }, } pretrained_settings = {} for model_name, sources in resnest_weights.items(): pretrained_settings[model_name] = {} for source_name, source_url in sources.items(): pretrained_settings[model_name][source_name] = { "url": source_url, "input_size": [3, 224, 224], "input_range": [0, 1], "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225], "num_classes": 1000, } timm_resnest_encoders = { "timm-resnest14d": { "encoder": ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest14d"], "params": { "out_channels": (3, 64, 256, 512, 1024, 2048), "block": ResNestBottleneck, "layers": [1, 1, 1, 1], "stem_type": "deep", "stem_width": 32, "avg_down": True, "base_width": 64, "cardinality": 1, "block_args": {"radix": 2, "avd": True, "avd_first": False}, }, }, "timm-resnest26d": { "encoder": ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest26d"], "params": { "out_channels": (3, 64, 256, 512, 1024, 2048), "block": ResNestBottleneck, "layers": [2, 2, 2, 2], "stem_type": "deep", "stem_width": 32, "avg_down": True, "base_width": 64, "cardinality": 1, "block_args": {"radix": 2, "avd": True, "avd_first": False}, }, }, "timm-resnest50d": { "encoder": ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest50d"], "params": { "out_channels": (3, 64, 256, 512, 1024, 2048), "block": ResNestBottleneck, "layers": [3, 4, 6, 3], "stem_type": "deep", "stem_width": 32, "avg_down": True, "base_width": 64, "cardinality": 1, "block_args": {"radix": 2, "avd": True, "avd_first": False}, }, }, "timm-resnest101e": { "encoder": ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest101e"], "params": { "out_channels": (3, 128, 256, 512, 1024, 2048), "block": ResNestBottleneck, "layers": [3, 4, 23, 3], "stem_type": "deep", "stem_width": 64, "avg_down": True, "base_width": 64, "cardinality": 1, "block_args": {"radix": 2, "avd": True, "avd_first": False}, }, }, "timm-resnest200e": { "encoder": ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest200e"], "params": { "out_channels": (3, 128, 256, 512, 1024, 2048), "block": ResNestBottleneck, "layers": [3, 24, 36, 3], "stem_type": "deep", "stem_width": 64, "avg_down": True, "base_width": 64, "cardinality": 1, "block_args": {"radix": 2, "avd": True, "avd_first": False}, }, }, "timm-resnest269e": { "encoder": ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest269e"], "params": { "out_channels": (3, 128, 256, 512, 1024, 2048), "block": ResNestBottleneck, "layers": [3, 30, 48, 8], "stem_type": "deep", "stem_width": 64, "avg_down": True, "base_width": 64, "cardinality": 1, "block_args": {"radix": 2, "avd": True, "avd_first": False}, }, }, "timm-resnest50d_4s2x40d": { "encoder": ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest50d_4s2x40d"], "params": { "out_channels": (3, 64, 256, 512, 1024, 2048), "block": ResNestBottleneck, "layers": [3, 4, 6, 3], "stem_type": "deep", "stem_width": 32, "avg_down": True, "base_width": 40, "cardinality": 2, "block_args": {"radix": 4, "avd": True, "avd_first": True}, }, }, "timm-resnest50d_1s4x24d": { "encoder": ResNestEncoder, "pretrained_settings": pretrained_settings["timm-resnest50d_1s4x24d"], "params": { "out_channels": (3, 64, 256, 512, 1024, 2048), "block": ResNestBottleneck, "layers": [3, 4, 6, 3], "stem_type": "deep", "stem_width": 32, "avg_down": True, "base_width": 24, "cardinality": 4, "block_args": {"radix": 1, "avd": True, "avd_first": True}, }, }, }