import torch.nn as nn from .modules import Activation class SegmentationHead(nn.Sequential): def __init__( self, in_channels, out_channels, kernel_size=3, activation=None, upsampling=1 ): conv2d = nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size // 2 ) upsampling = ( nn.UpsamplingBilinear2d(scale_factor=upsampling) if upsampling > 1 else nn.Identity() ) activation = Activation(activation) super().__init__(conv2d, upsampling, activation) class ClassificationHead(nn.Sequential): def __init__( self, in_channels, classes, pooling="avg", dropout=0.2, activation=None ): if pooling not in ("max", "avg"): raise ValueError( "Pooling should be one of ('max', 'avg'), got {}.".format(pooling) ) pool = nn.AdaptiveAvgPool2d(1) if pooling == "avg" else nn.AdaptiveMaxPool2d(1) flatten = nn.Flatten() dropout = nn.Dropout(p=dropout, inplace=True) if dropout else nn.Identity() linear = nn.Linear(in_channels, classes, bias=True) activation = Activation(activation) super().__init__(pool, flatten, dropout, linear, activation)