"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` Attributes: _out_channels (list of int): specify number of channels for each encoder feature tensor _depth (int): specify number of stages in decoder (in other words number of downsampling operations) _in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) Methods: forward(self, x: torch.Tensor) produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of shape NCHW (features should be sorted in descending order according to spatial resolution, starting with resolution same as input `x` tensor). Input: `x` with shape (1, 3, 64, 64) Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes [(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), (1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) also should support number of features according to specified depth, e.g. if depth = 5, number of feature tensors = 6 (one with same resolution as input and 5 downsampled), depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). """ import torch.nn as nn from pretrainedmodels.models.inceptionv4 import InceptionV4, BasicConv2d from pretrainedmodels.models.inceptionv4 import pretrained_settings from ._base import EncoderMixin class InceptionV4Encoder(InceptionV4, EncoderMixin): def __init__(self, stage_idxs, out_channels, depth=5, **kwargs): super().__init__(**kwargs) self._stage_idxs = stage_idxs self._out_channels = out_channels self._depth = depth self._in_channels = 3 # correct paddings for m in self.modules(): if isinstance(m, nn.Conv2d): if m.kernel_size == (3, 3): m.padding = (1, 1) if isinstance(m, nn.MaxPool2d): m.padding = (1, 1) # remove linear layers del self.last_linear def make_dilated(self, stage_list, dilation_list): raise ValueError( "InceptionV4 encoder does not support dilated mode " "due to pooling operation for downsampling!" ) def get_stages(self): return [ nn.Identity(), self.features[: self._stage_idxs[0]], self.features[self._stage_idxs[0] : self._stage_idxs[1]], self.features[self._stage_idxs[1] : self._stage_idxs[2]], self.features[self._stage_idxs[2] : self._stage_idxs[3]], self.features[self._stage_idxs[3] :], ] def forward(self, x): stages = self.get_stages() features = [] for i in range(self._depth + 1): x = stages[i](x) features.append(x) return features def load_state_dict(self, state_dict, **kwargs): state_dict.pop("last_linear.bias", None) state_dict.pop("last_linear.weight", None) super().load_state_dict(state_dict, **kwargs) inceptionv4_encoders = { "inceptionv4": { "encoder": InceptionV4Encoder, "pretrained_settings": pretrained_settings["inceptionv4"], "params": { "stage_idxs": (3, 5, 9, 15), "out_channels": (3, 64, 192, 384, 1024, 1536), "num_classes": 1001, }, } }