import timm import numpy as np import torch.nn as nn from ._base import EncoderMixin def _make_divisible(x, divisible_by=8): return int(np.ceil(x * 1.0 / divisible_by) * divisible_by) class MobileNetV3Encoder(nn.Module, EncoderMixin): def __init__(self, model_name, width_mult, depth=5, **kwargs): super().__init__() if "large" not in model_name and "small" not in model_name: raise ValueError("MobileNetV3 wrong model name {}".format(model_name)) self._mode = "small" if "small" in model_name else "large" self._depth = depth self._out_channels = self._get_channels(self._mode, width_mult) self._in_channels = 3 # minimal models replace hardswish with relu self.model = timm.create_model( model_name=model_name, scriptable=True, # torch.jit scriptable exportable=True, # onnx export features_only=True, ) def _get_channels(self, mode, width_mult): if mode == "small": channels = [16, 16, 24, 48, 576] else: channels = [16, 24, 40, 112, 960] channels = [3,] + [_make_divisible(x * width_mult) for x in channels] return tuple(channels) def get_stages(self): if self._mode == "small": return [ nn.Identity(), nn.Sequential(self.model.conv_stem, self.model.bn1, self.model.act1,), self.model.blocks[0], self.model.blocks[1], self.model.blocks[2:4], self.model.blocks[4:], ] elif self._mode == "large": return [ nn.Identity(), nn.Sequential( self.model.conv_stem, self.model.bn1, self.model.act1, self.model.blocks[0], ), self.model.blocks[1], self.model.blocks[2], self.model.blocks[3:5], self.model.blocks[5:], ] else: ValueError( "MobileNetV3 mode should be small or large, got {}".format(self._mode) ) def forward(self, x): stages = self.get_stages() features = [] for i in range(self._depth + 1): x = stages[i](x) features.append(x) return features def load_state_dict(self, state_dict, **kwargs): state_dict.pop("conv_head.weight", None) state_dict.pop("conv_head.bias", None) state_dict.pop("classifier.weight", None) state_dict.pop("classifier.bias", None) self.model.load_state_dict(state_dict, **kwargs) mobilenetv3_weights = { "tf_mobilenetv3_large_075": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth" # noqa }, "tf_mobilenetv3_large_100": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth" # noqa }, "tf_mobilenetv3_large_minimal_100": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth" # noqa }, "tf_mobilenetv3_small_075": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth" # noqa }, "tf_mobilenetv3_small_100": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth" # noqa }, "tf_mobilenetv3_small_minimal_100": { "imagenet": "https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth" # noqa }, } pretrained_settings = {} for model_name, sources in mobilenetv3_weights.items(): pretrained_settings[model_name] = {} for source_name, source_url in sources.items(): pretrained_settings[model_name][source_name] = { "url": source_url, "input_range": [0, 1], "mean": [0.485, 0.456, 0.406], "std": [0.229, 0.224, 0.225], "input_space": "RGB", } timm_mobilenetv3_encoders = { "timm-mobilenetv3_large_075": { "encoder": MobileNetV3Encoder, "pretrained_settings": pretrained_settings["tf_mobilenetv3_large_075"], "params": {"model_name": "tf_mobilenetv3_large_075", "width_mult": 0.75}, }, "timm-mobilenetv3_large_100": { "encoder": MobileNetV3Encoder, "pretrained_settings": pretrained_settings["tf_mobilenetv3_large_100"], "params": {"model_name": "tf_mobilenetv3_large_100", "width_mult": 1.0}, }, "timm-mobilenetv3_large_minimal_100": { "encoder": MobileNetV3Encoder, "pretrained_settings": pretrained_settings["tf_mobilenetv3_large_minimal_100"], "params": {"model_name": "tf_mobilenetv3_large_minimal_100", "width_mult": 1.0}, }, "timm-mobilenetv3_small_075": { "encoder": MobileNetV3Encoder, "pretrained_settings": pretrained_settings["tf_mobilenetv3_small_075"], "params": {"model_name": "tf_mobilenetv3_small_075", "width_mult": 0.75}, }, "timm-mobilenetv3_small_100": { "encoder": MobileNetV3Encoder, "pretrained_settings": pretrained_settings["tf_mobilenetv3_small_100"], "params": {"model_name": "tf_mobilenetv3_small_100", "width_mult": 1.0}, }, "timm-mobilenetv3_small_minimal_100": { "encoder": MobileNetV3Encoder, "pretrained_settings": pretrained_settings["tf_mobilenetv3_small_minimal_100"], "params": {"model_name": "tf_mobilenetv3_small_minimal_100", "width_mult": 1.0}, }, }