"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` Attributes: _out_channels (list of int): specify number of channels for each encoder feature tensor _depth (int): specify number of stages in decoder (in other words number of downsampling operations) _in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) Methods: forward(self, x: torch.Tensor) produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of shape NCHW (features should be sorted in descending order according to spatial resolution, starting with resolution same as input `x` tensor). Input: `x` with shape (1, 3, 64, 64) Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes [(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), (1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) also should support number of features according to specified depth, e.g. if depth = 5, number of feature tensors = 6 (one with same resolution as input and 5 downsampled), depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). """ import torch.nn as nn from torchvision.models.vgg import VGG from torchvision.models.vgg import make_layers from pretrainedmodels.models.torchvision_models import pretrained_settings from ._base import EncoderMixin # fmt: off cfg = { 'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'], 'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'], 'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'], } # fmt: on class VGGEncoder(VGG, EncoderMixin): def __init__(self, out_channels, config, batch_norm=False, depth=5, **kwargs): super().__init__(make_layers(config, batch_norm=batch_norm), **kwargs) self._out_channels = out_channels self._depth = depth self._in_channels = 3 del self.classifier def make_dilated(self, *args, **kwargs): raise ValueError( "'VGG' models do not support dilated mode due to Max Pooling" " operations for downsampling!" ) def get_stages(self): stages = [] stage_modules = [] for module in self.features: if isinstance(module, nn.MaxPool2d): stages.append(nn.Sequential(*stage_modules)) stage_modules = [] stage_modules.append(module) stages.append(nn.Sequential(*stage_modules)) return stages def forward(self, x): stages = self.get_stages() features = [] for i in range(self._depth + 1): x = stages[i](x) features.append(x) return features def load_state_dict(self, state_dict, **kwargs): keys = list(state_dict.keys()) for k in keys: if k.startswith("classifier"): state_dict.pop(k, None) super().load_state_dict(state_dict, **kwargs) vgg_encoders = { "vgg11": { "encoder": VGGEncoder, "pretrained_settings": pretrained_settings["vgg11"], "params": { "out_channels": (64, 128, 256, 512, 512, 512), "config": cfg["A"], "batch_norm": False, }, }, "vgg11_bn": { "encoder": VGGEncoder, "pretrained_settings": pretrained_settings["vgg11_bn"], "params": { "out_channels": (64, 128, 256, 512, 512, 512), "config": cfg["A"], "batch_norm": True, }, }, "vgg13": { "encoder": VGGEncoder, "pretrained_settings": pretrained_settings["vgg13"], "params": { "out_channels": (64, 128, 256, 512, 512, 512), "config": cfg["B"], "batch_norm": False, }, }, "vgg13_bn": { "encoder": VGGEncoder, "pretrained_settings": pretrained_settings["vgg13_bn"], "params": { "out_channels": (64, 128, 256, 512, 512, 512), "config": cfg["B"], "batch_norm": True, }, }, "vgg16": { "encoder": VGGEncoder, "pretrained_settings": pretrained_settings["vgg16"], "params": { "out_channels": (64, 128, 256, 512, 512, 512), "config": cfg["D"], "batch_norm": False, }, }, "vgg16_bn": { "encoder": VGGEncoder, "pretrained_settings": pretrained_settings["vgg16_bn"], "params": { "out_channels": (64, 128, 256, 512, 512, 512), "config": cfg["D"], "batch_norm": True, }, }, "vgg19": { "encoder": VGGEncoder, "pretrained_settings": pretrained_settings["vgg19"], "params": { "out_channels": (64, 128, 256, 512, 512, 512), "config": cfg["E"], "batch_norm": False, }, }, "vgg19_bn": { "encoder": VGGEncoder, "pretrained_settings": pretrained_settings["vgg19_bn"], "params": { "out_channels": (64, 128, 256, 512, 512, 512), "config": cfg["E"], "batch_norm": True, }, }, }