File size: 8,328 Bytes
a202a34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7db9719
a202a34
 
 
 
 
 
 
 
 
 
 
 
7db9719
a202a34
 
 
 
 
 
 
 
 
 
 
7db9719
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a202a34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bc24ed
a202a34
7bc24ed
 
 
 
 
f036335
 
 
 
a202a34
 
 
 
7db9719
a202a34
 
7db9719
 
 
a202a34
 
 
 
 
 
 
 
 
 
 
7db9719
 
a202a34
 
 
 
1f7767c
a202a34
 
 
 
 
1f7767c
a202a34
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import cv2
import gradio as gr
import numpy as np
import torch

from diffusers import StableDiffusionControlNetPipeline, StableDiffusionLatentUpscalePipeline, ControlNetModel, AutoencoderKL
from diffusers import UniPCMultistepScheduler
from PIL import Image

from lpw import _encode_prompt

controlnet_ColorCanny = ControlNetModel.from_pretrained("ghoskno/Color-Canny-Controlnet-model", torch_dtype=torch.float16)

vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)

pipe = StableDiffusionControlNetPipeline.from_pretrained("Lykon/DreamShaper", vae=vae, controlnet=controlnet_ColorCanny, torch_dtype=torch.float16)

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_attention_slicing()

# Generator seed
generator = torch.manual_seed(0)

def HWC3(x):
    assert x.dtype == np.uint8
    if x.ndim == 2:
        x = x[:, :, None]
    assert x.ndim == 3
    H, W, C = x.shape
    assert C == 1 or C == 3 or C == 4
    if C == 3:
        return x
    if C == 1:
        return np.concatenate([x, x, x], axis=2)
    if C == 4:
        color = x[:, :, 0:3].astype(np.float32)
        alpha = x[:, :, 3:4].astype(np.float32) / 255.0
        y = color * alpha + 255.0 * (1.0 - alpha)
        y = y.clip(0, 255).astype(np.uint8)
        return y

def resize_image(input_image, resolution, max_edge=False, edge_limit=False):
    H, W, C = input_image.shape

    H = float(H)
    W = float(W)
    if max_edge:
        k = float(resolution) / max(H, W)
    else:
        k = float(resolution) / min(H, W)
    H *= k
    W *= k

    H, W = int(H), int(W)

    img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
    if not edge_limit:
        return img
    pH = int(np.round(H / 64.0)) * 64
    pW = int(np.round(W / 64.0)) * 64
    pimg = np.zeros((pH, pW, 3), dtype=img.dtype)

    oH, oW = (pH-H)//2, (pW-W)//2
    pimg[oH:oH+H, oW:oW+W] = img
    return pimg

def get_canny_filter(image, low_threshold=100, high_threshold=200):
    image = cv2.Canny(image, low_threshold, high_threshold)
    image = image[:, :, None]
    image = np.concatenate([image, image, image], axis=2)
    return image

def get_color_filter(cond_image, mask_size=64):
    H, W = cond_image.shape[:2]
    cond_image = cv2.resize(cond_image, (W // mask_size, H // mask_size), interpolation=cv2.INTER_CUBIC)
    color = cv2.resize(cond_image, (W, H), interpolation=cv2.INTER_NEAREST)
    return color

def get_colorcanny(image, mask_size):
    canny_img = get_canny_filter(image)

    color_img = get_color_filter(image, int(mask_size))

    color_img[np.where(canny_img > 128)] = 255
    return color_img
    
def process(input_image, prompt, n_prompt, strength=1.0, color_mask_size=96, size=512, scale=6.0, ddim_steps=20):
    prompt_embeds, negative_prompt_embeds = _encode_prompt(pipe, prompt, pipe.device, 1, True, n_prompt, 3)
    input_image = resize_image(input_image, size, max_edge=True, edge_limit=True)

    cond_img = get_colorcanny(input_image, color_mask_size)
    cond_img = Image.fromarray(cond_img)
    output = pipe(
        prompt_embeds=prompt_embeds, 
        negative_prompt_embeds=negative_prompt_embeds,
        image=cond_img,
        generator=generator,
        num_images_per_prompt=1,
        num_inference_steps=ddim_steps,
        guidance_scale=scale,
        controlnet_conditioning_scale=float(strength)
    )
    return [output.images[0], cond_img]


def inpaint_process(inpaint_image, input_image, prompt, n_prompt, strength=1.0, color_mask_size=96, size=512, scale=6.0, ddim_steps=20):
    if inpaint_image is None:
        return process(input_image, prompt, n_prompt, strength, color_mask_size, size, scale, ddim_steps)
    
    prompt_embeds, negative_prompt_embeds = _encode_prompt(pipe, prompt, pipe.device, 1, True, n_prompt, 3)
    input_image = resize_image(input_image, size, max_edge=True, edge_limit=True)
    inpaint_image = resize_image(inpaint_image, size, max_edge=True, edge_limit=True)

    canny_img = get_canny_filter(input_image)

    color_img = get_color_filter(inpaint_image, int(color_mask_size))

    color_img[np.where(canny_img > 128)] = 255
    cond_img = Image.fromarray(color_img)

    output = pipe(
        prompt_embeds=prompt_embeds, 
        negative_prompt_embeds=negative_prompt_embeds,
        image=cond_img,
        generator=generator,
        num_images_per_prompt=1,
        num_inference_steps=ddim_steps,
        guidance_scale=scale,
        controlnet_conditioning_scale=float(strength)
    )
    return [output.images[0], cond_img]


block = gr.Blocks().queue()

with block:
    gr.Markdown("""
    # 🧨 Color-Canny-ControlNet

    This is an extended model of ControlNet that not only utilizes the Canny edge of images but also incorporates the color features. 
    
    We trained this model on the cleaned laion-art dataset that contains 2.6 million images with 2 epochs, using the Canny edge and color mosaic of the images as input. The processed dataset and pretrained model can be found in [ghoskno/laion-art-en-colorcanny](https://huggingface.co/datasets/ghoskno/laion-art-en-colorcanny) and [ghoskno/Color-Canny-Controlnet-model](https://huggingface.co/ghoskno/Color-Canny-Controlnet-model).
    
    This allows generated images to maintain the same color composition as the original images. If you are looking to control both the contours and colors of the original image while using ControlNet to generate images, then this is the best option for you! You can try out this model or test the examples provided below 🤗.

    ## Update
    Hi, everyone, We have added a Color-Canny-ControlNet accelerated version of our implementation based on Nvidia Triton and operator optimization. This faster ControlNet is deployed on a Nvidia A10 machine, and for a 512-pixel image, the inference takes about 1.2s, which is more faster than general implementation. 
    Welcome to try this [faster Color-Canny-ControlNet](http://121.40.118.209:7860/).
    """)
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(source='upload', type="numpy")
            color_image = gr.ImagePaint(type="numpy")
            prompt = gr.Textbox(label="Prompt", value='')
            n_prompt = gr.Textbox(label="Negative Prompt", value='')
            with gr.Row():
                run_button = gr.Button(label="Run")
                run_edit_button = gr.Button(value='Run with inpaint color', label="Run with inpaint color")
            with gr.Accordion('Advanced', open=False):
                strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
                color_mask_size = gr.Slider(label="Color Mask Size", minimum=32, maximum=256, value=96, step=16)
                size = gr.Slider(label="Size", minimum=256, maximum=768, value=512, step=128)
                scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=6.0, step=0.1)
                ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=50, value=20, step=1)
            
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
    ips = [input_image, prompt, n_prompt, strength, color_mask_size, size, scale, ddim_steps]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
    run_edit_button.click(fn=inpaint_process, inputs=[color_image] + ips, outputs=[result_gallery])


    gr.Examples(
        examples=[
            ["./asserts/1.png", "a concept art of by Makoto Shinkai, a girl is standing in the middle of the sea", "text, bad anatomy, blurry, (low quality, blurry)"],
            ["./asserts/2.png", "a concept art with vivid ocean by Makoto Shinkai", "text, bad anatomy, blurry, (low quality, blurry)"],
            ["./asserts/3.png", "sky city on the sea, with waves churning and wind power plants on the island", "text, bad anatomy, blurry, (low quality, blurry)"],
        ],
        inputs=[
            input_image, prompt, n_prompt
        ],
        outputs=[result_gallery],
        fn=process,
        cache_examples=True,
    )
block.launch(debug = True, server_name='0.0.0.0')