Spaces:
Runtime error
Runtime error
ghosthamlet
commited on
Commit
•
4001c44
1
Parent(s):
e3fed34
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
|
5 |
+
##Bloom Inference API
|
6 |
+
API_URL = "https://api-inference.huggingface.co/models/bigscience/bloom"
|
7 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
8 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
9 |
+
|
10 |
+
|
11 |
+
def text_generate(prompt, generated_txt):
|
12 |
+
#Prints to debug the code
|
13 |
+
print(f"*****Inside text_generate - Prompt is :{prompt}")
|
14 |
+
json_ = {"inputs": prompt,
|
15 |
+
"parameters":
|
16 |
+
{
|
17 |
+
"top_p": 0.8,
|
18 |
+
"top_k": 100,
|
19 |
+
"temperature": 1.0,
|
20 |
+
"max_new_tokens": 250,
|
21 |
+
"return_full_text": True,
|
22 |
+
"do_sample":True,
|
23 |
+
},
|
24 |
+
"options":
|
25 |
+
{"use_cache": True,
|
26 |
+
"wait_for_model": True,
|
27 |
+
},}
|
28 |
+
response = requests.post(API_URL, headers=headers, json=json_)
|
29 |
+
print(f"Response is : {response}")
|
30 |
+
output = response.json()
|
31 |
+
print(f"output is : {output}")
|
32 |
+
output_tmp = output[0]['generated_text']
|
33 |
+
print(f"output_tmp is: {output_tmp}")
|
34 |
+
solution = output_tmp.split("\nQ:")[0]
|
35 |
+
print(f"Final response after splits is: {solution}")
|
36 |
+
if '\nOutput:' in solution:
|
37 |
+
final_solution = solution.split("\nOutput:")[0]
|
38 |
+
print(f"Response after removing output is: {final_solution}")
|
39 |
+
elif '\n\n' in solution:
|
40 |
+
final_solution = solution.split("\n\n")[0]
|
41 |
+
print(f"Response after removing new line entries is: {final_solution}")
|
42 |
+
else:
|
43 |
+
final_solution = solution
|
44 |
+
|
45 |
+
|
46 |
+
if len(generated_txt) == 0 :
|
47 |
+
display_output = final_solution
|
48 |
+
else:
|
49 |
+
display_output = generated_txt[:-len(prompt)] + final_solution
|
50 |
+
new_prompt = final_solution[len(prompt):]
|
51 |
+
print(f"new prompt for next cycle is : {new_prompt}")
|
52 |
+
print(f"display_output for printing on screen is : {display_output}")
|
53 |
+
if len(new_prompt) == 0:
|
54 |
+
temp_text = display_output[::-1]
|
55 |
+
print(f"What is the last character of sentence? : {temp_text[0]}")
|
56 |
+
if temp_text[1] == '.':
|
57 |
+
first_period_loc = temp_text[2:].find('.') + 1
|
58 |
+
print(f"Location of last Period is: {first_period_loc}")
|
59 |
+
new_prompt = display_output[-first_period_loc:-1]
|
60 |
+
print(f"Not sending blank as prompt so new prompt for next cycle is : {new_prompt}")
|
61 |
+
else:
|
62 |
+
print("HERE")
|
63 |
+
first_period_loc = temp_text.find('.')
|
64 |
+
print(f"Location of last Period is : {first_period_loc}")
|
65 |
+
new_prompt = display_output[-first_period_loc:-1]
|
66 |
+
print(f"Not sending blank as prompt so new prompt for next cycle is : {new_prompt}")
|
67 |
+
display_output = display_output[:-1]
|
68 |
+
|
69 |
+
return display_output, new_prompt
|
70 |
+
|
71 |
+
|
72 |
+
demo = gr.Blocks()
|
73 |
+
|
74 |
+
with demo:
|
75 |
+
gr.Markdown("<h1><center>Write Stories Using Bloom</center></h1>")
|
76 |
+
gr.Markdown(
|
77 |
+
"""Bloom is a model by [HuggingFace](https://huggingface.co/bigscience/bloom) and a team of more than 1000 researchers coming together as [BigScienceW Bloom](https://twitter.com/BigscienceW).\n\nLarge language models have demonstrated a capability of producing coherent sentences and given a context we can pretty much decide the *theme* of generated text.\n\nHow to Use this App: Use the sample text given as prompt or type in a new prompt as a starting point of your awesome story! Just keep pressing the 'Generate Text' Button and go crazy!\n\nHow this App works: This app operates by feeding back the text generated by Bloom to itself as a Prompt for next generation round and so on. Currently, due to size-limits on Prompt and Token generation, we are only able to feed very limited-length text as Prompt and are getting very few tokens generated in-turn. This makes it difficult to keep a tab on theme of text generation, so please bear with that. In summary, I believe it is a nice little fun App which you can play with for a while.\n\nThis Space is created by [Yuvraj Sharma](https://twitter.com/yvrjsharma) for EuroPython 2022 Demo."""
|
78 |
+
)
|
79 |
+
with gr.Row():
|
80 |
+
input_prompt = gr.Textbox(label="Write some text to get started...", lines=3, value="Dear human philosophers, I read your comments on my abilities and limitations with great interest.")
|
81 |
+
|
82 |
+
with gr.Row():
|
83 |
+
generated_txt = gr.Textbox(lines=7, visible = True)
|
84 |
+
|
85 |
+
b1 = gr.Button("Generate Your Story")
|
86 |
+
|
87 |
+
b1.click(text_generate, inputs=[input_prompt, generated_txt], outputs=[generated_txt, input_prompt])
|
88 |
+
|
89 |
+
demo.launch(enable_queue=True, debug=True)
|