ghostsInTheMachine
commited on
Commit
•
09e9f28
1
Parent(s):
e2ac6fb
Update app.py
Browse files
app.py
CHANGED
@@ -1,193 +1,321 @@
|
|
1 |
-
from gradio_imageslider import ImageSlider
|
2 |
-
import functools
|
3 |
-
import os
|
4 |
-
import tempfile
|
5 |
-
import diffusers
|
6 |
import gradio as gr
|
7 |
-
import
|
8 |
-
import numpy as np
|
9 |
import spaces
|
10 |
-
import
|
11 |
from PIL import Image
|
12 |
-
|
13 |
-
|
14 |
-
import
|
15 |
-
|
16 |
-
|
17 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
|
22 |
-
def
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
def
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
.md_feedback li {
|
79 |
-
margin-bottom: 0px !important;
|
80 |
-
}
|
81 |
-
""",
|
82 |
-
head="""
|
83 |
-
<script async src="https://www.googletagmanager.com/gtag/js?id=G-1FWSVCGZTG"></script>
|
84 |
-
<script>
|
85 |
-
window.dataLayer = window.dataLayer || [];
|
86 |
-
function gtag() {dataLayer.push(arguments);}
|
87 |
-
gtag('js', new Date());
|
88 |
-
gtag('config', 'G-1FWSVCGZTG');
|
89 |
-
</script>
|
90 |
-
""",
|
91 |
-
) as demo:
|
92 |
-
gr.Markdown(
|
93 |
-
"""
|
94 |
-
# LOTUS: Diffusion-based Visual Foundation Model for High-quality Dense Prediction
|
95 |
-
<p align="center">
|
96 |
-
<a title="Page" href="https://lotus3d.github.io/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
97 |
-
<img src="https://img.shields.io/badge/Project-Website-pink?logo=googlechrome&logoColor=white">
|
98 |
-
</a>
|
99 |
-
<a title="arXiv" href="https://arxiv.org/abs/2409.18124" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
100 |
-
<img src="https://img.shields.io/badge/arXiv-Paper-b31b1b?logo=arxiv&logoColor=white">
|
101 |
-
</a>
|
102 |
-
<a title="Github" href="https://github.com/EnVision-Research/Lotus" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
103 |
-
<img src="https://img.shields.io/github/stars/EnVision-Research/Lotus?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
|
104 |
-
</a>
|
105 |
-
<a title="Social" href="https://x.com/Jingheya/status/1839553365870784563" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
106 |
-
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
|
107 |
-
</a>
|
108 |
-
<a title="Social" href="https://x.com/haodongli00/status/1839524569058582884" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
|
109 |
-
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
|
110 |
-
</a>
|
111 |
-
<br>
|
112 |
-
<strong>Please consider starring <span style="color: orange">★</span> the <a href="https://github.com/EnVision-Research/Lotus" target="_blank" rel="noopener noreferrer">GitHub Repo</a> if you find this useful!</strong>
|
113 |
-
"""
|
114 |
-
)
|
115 |
-
with gr.Tabs(elem_classes=["tabs"]):
|
116 |
-
with gr.Row():
|
117 |
-
with gr.Column():
|
118 |
-
image_input = gr.Image(
|
119 |
-
label="Input Image",
|
120 |
-
type="filepath",
|
121 |
-
)
|
122 |
-
seed = gr.Number(
|
123 |
-
label="Seed (only for Generative mode)",
|
124 |
-
minimum=0,
|
125 |
-
maximum=999999999,
|
126 |
-
)
|
127 |
-
with gr.Row():
|
128 |
-
image_submit_btn = gr.Button(
|
129 |
-
value="Predict Depth!", variant="primary"
|
130 |
-
)
|
131 |
-
image_reset_btn = gr.Button(value="Reset")
|
132 |
-
with gr.Column():
|
133 |
-
image_output_g = ImageSlider(
|
134 |
-
label="Output (Generative)",
|
135 |
-
type="filepath",
|
136 |
-
interactive=False,
|
137 |
-
elem_classes="slider",
|
138 |
-
position=0.25,
|
139 |
-
)
|
140 |
-
with gr.Row():
|
141 |
-
image_output_d = ImageSlider(
|
142 |
-
label="Output (Discriminative)",
|
143 |
-
type="filepath",
|
144 |
-
interactive=False,
|
145 |
-
elem_classes="slider",
|
146 |
-
position=0.25,
|
147 |
-
)
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
concurrency_limit=1,
|
166 |
-
)
|
167 |
-
image_reset_btn.click(
|
168 |
-
fn=lambda: (
|
169 |
-
None,
|
170 |
-
None,
|
171 |
-
None,
|
172 |
-
),
|
173 |
-
inputs=[],
|
174 |
-
outputs=[image_output_g, image_output_d],
|
175 |
-
queue=False,
|
176 |
-
)
|
177 |
|
178 |
-
|
179 |
-
demo.queue(
|
180 |
-
api_open=False,
|
181 |
-
).launch(
|
182 |
-
server_name="0.0.0.0",
|
183 |
-
server_port=7860,
|
184 |
-
)
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
if __name__ == "__main__":
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
|
|
3 |
import spaces
|
4 |
+
import moviepy.editor as mp
|
5 |
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
import tempfile
|
8 |
+
import time
|
9 |
+
import os
|
10 |
+
import shutil
|
11 |
+
import ffmpeg
|
12 |
+
from concurrent.futures import ThreadPoolExecutor
|
13 |
+
from gradio.themes.base import Base
|
14 |
+
from gradio.themes.utils import colors, fonts
|
15 |
+
from infer import lotus # Import the depth model inference function
|
16 |
+
|
17 |
+
# Custom Theme Definition
|
18 |
+
class WhiteTheme(Base):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
*,
|
22 |
+
primary_hue: colors.Color | str = colors.orange,
|
23 |
+
font: fonts.Font | str | tuple[fonts.Font | str, ...] = (
|
24 |
+
fonts.GoogleFont("Inter"),
|
25 |
+
"ui-sans-serif",
|
26 |
+
"system-ui",
|
27 |
+
"sans-serif",
|
28 |
+
),
|
29 |
+
font_mono: fonts.Font | str | tuple[fonts.Font | str, ...] = (
|
30 |
+
fonts.GoogleFont("Inter"),
|
31 |
+
"ui-monospace",
|
32 |
+
"system-ui",
|
33 |
+
"monospace",
|
34 |
+
)
|
35 |
+
):
|
36 |
+
super().__init__(
|
37 |
+
primary_hue=primary_hue,
|
38 |
+
font=font,
|
39 |
+
font_mono=font_mono,
|
40 |
+
)
|
41 |
+
|
42 |
+
self.set(
|
43 |
+
background_fill_primary="*primary_50",
|
44 |
+
background_fill_secondary="white",
|
45 |
+
border_color_primary="*primary_300",
|
46 |
+
body_background_fill="white",
|
47 |
+
body_background_fill_dark="white",
|
48 |
+
block_background_fill="white",
|
49 |
+
block_background_fill_dark="white",
|
50 |
+
panel_background_fill="white",
|
51 |
+
panel_background_fill_dark="white",
|
52 |
+
body_text_color="black",
|
53 |
+
body_text_color_dark="black",
|
54 |
+
block_label_text_color="black",
|
55 |
+
block_label_text_color_dark="black",
|
56 |
+
block_border_color="white",
|
57 |
+
panel_border_color="white",
|
58 |
+
input_border_color="lightgray",
|
59 |
+
input_background_fill="white",
|
60 |
+
input_background_fill_dark="white",
|
61 |
+
shadow_drop="none"
|
62 |
+
)
|
63 |
|
64 |
+
# Set device
|
65 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
66 |
|
67 |
+
def process_frame(frame, seed=0):
|
68 |
+
"""
|
69 |
+
Process a single frame through the depth model.
|
70 |
+
Returns the discriminative depth map.
|
71 |
+
"""
|
72 |
+
try:
|
73 |
+
# Convert frame to PIL Image
|
74 |
+
image = Image.fromarray(frame)
|
75 |
+
|
76 |
+
# Save temporary image (lotus requires a file path)
|
77 |
+
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
78 |
+
image.save(tmp.name)
|
79 |
+
|
80 |
+
# Process through lotus model
|
81 |
+
_, output_d = lotus(tmp.name, 'depth', seed, device)
|
82 |
+
|
83 |
+
# Clean up temp file
|
84 |
+
os.unlink(tmp.name)
|
85 |
+
|
86 |
+
# Convert depth output to numpy array
|
87 |
+
depth_array = np.array(output_d)
|
88 |
+
return depth_array
|
89 |
+
|
90 |
+
except Exception as e:
|
91 |
+
print(f"Error processing frame: {e}")
|
92 |
+
return None
|
93 |
|
94 |
+
@spaces.GPU
|
95 |
+
def process_video(video_path, fps=0, seed=0, max_workers=6):
|
96 |
+
"""
|
97 |
+
Process video to create depth map sequence and video.
|
98 |
+
Maintains original resolution and framerate if fps=0.
|
99 |
+
"""
|
100 |
+
temp_dir = None
|
101 |
+
try:
|
102 |
+
start_time = time.time()
|
103 |
+
video = mp.VideoFileClip(video_path)
|
104 |
+
|
105 |
+
# Use original video FPS if not specified
|
106 |
+
if fps == 0:
|
107 |
+
fps = video.fps
|
108 |
+
|
109 |
+
frames = list(video.iter_frames(fps=fps))
|
110 |
+
total_frames = len(frames)
|
111 |
+
|
112 |
+
print(f"Processing {total_frames} frames at {fps} FPS...")
|
113 |
+
|
114 |
+
# Create temporary directory for frame sequence
|
115 |
+
temp_dir = tempfile.mkdtemp()
|
116 |
+
frames_dir = os.path.join(temp_dir, "frames")
|
117 |
+
os.makedirs(frames_dir, exist_ok=True)
|
118 |
+
|
119 |
+
# Process frames with parallel execution
|
120 |
+
processed_frames = []
|
121 |
+
with ThreadPoolExecutor(max_workers=max_workers) as executor:
|
122 |
+
futures = [executor.submit(process_frame, frame, seed) for frame in frames]
|
123 |
+
for i, future in enumerate(futures):
|
124 |
+
try:
|
125 |
+
result = future.result()
|
126 |
+
if result is not None:
|
127 |
+
# Save frame
|
128 |
+
frame_path = os.path.join(frames_dir, f"frame_{i:06d}.png")
|
129 |
+
Image.fromarray(result).save(frame_path)
|
130 |
+
|
131 |
+
# Collect processed frame for preview
|
132 |
+
processed_frames.append(result)
|
133 |
+
|
134 |
+
# Update preview
|
135 |
+
elapsed_time = time.time() - start_time
|
136 |
+
yield processed_frames[-1], None, None, f"Processing frame {i+1}/{total_frames}... Elapsed time: {elapsed_time:.2f} seconds"
|
137 |
+
|
138 |
+
if (i + 1) % 10 == 0:
|
139 |
+
print(f"Processed {i+1}/{total_frames} frames")
|
140 |
+
except Exception as e:
|
141 |
+
print(f"Error processing frame {i+1}: {e}")
|
142 |
+
|
143 |
+
print("Creating output files...")
|
144 |
+
# Create output directory
|
145 |
+
output_dir = os.path.join(os.path.dirname(video_path), "output")
|
146 |
+
os.makedirs(output_dir, exist_ok=True)
|
147 |
+
|
148 |
+
# Create ZIP of frame sequence
|
149 |
+
zip_filename = f"depth_frames_{int(time.time())}.zip"
|
150 |
+
zip_path = os.path.join(output_dir, zip_filename)
|
151 |
+
shutil.make_archive(zip_path[:-4], 'zip', frames_dir)
|
152 |
+
|
153 |
+
# Create MP4 video
|
154 |
+
print("Creating MP4 video...")
|
155 |
+
video_filename = f"depth_video_{int(time.time())}.mp4"
|
156 |
+
video_path = os.path.join(output_dir, video_filename)
|
157 |
+
|
158 |
+
try:
|
159 |
+
# FFmpeg settings for high-quality MP4
|
160 |
+
stream = ffmpeg.input(
|
161 |
+
os.path.join(frames_dir, 'frame_%06d.png'),
|
162 |
+
pattern_type='sequence',
|
163 |
+
framerate=fps
|
164 |
+
)
|
165 |
+
|
166 |
+
stream = ffmpeg.output(
|
167 |
+
stream,
|
168 |
+
video_path,
|
169 |
+
vcodec='libx264',
|
170 |
+
pix_fmt='yuv420p',
|
171 |
+
crf=17, # High quality
|
172 |
+
threads=max_workers
|
173 |
+
)
|
174 |
+
|
175 |
+
ffmpeg.run(stream, overwrite_output=True, capture_stdout=True, capture_stderr=True)
|
176 |
+
print("MP4 video created successfully!")
|
177 |
+
|
178 |
+
except ffmpeg.Error as e:
|
179 |
+
print(f"Error creating video: {e.stderr.decode() if e.stderr else str(e)}")
|
180 |
+
video_path = None
|
181 |
+
|
182 |
+
print("Processing complete!")
|
183 |
+
yield None, zip_path, video_path, f"Processing complete! Total time: {time.time() - start_time:.2f} seconds"
|
184 |
+
|
185 |
+
except Exception as e:
|
186 |
+
print(f"Error: {e}")
|
187 |
+
yield None, None, None, f"Error processing video: {e}"
|
188 |
+
finally:
|
189 |
+
if temp_dir and os.path.exists(temp_dir):
|
190 |
+
try:
|
191 |
+
shutil.rmtree(temp_dir)
|
192 |
+
except Exception as e:
|
193 |
+
print(f"Error cleaning up temp directory: {e}")
|
194 |
|
195 |
+
def process_wrapper(video, fps=0, seed=0, max_workers=6):
|
196 |
+
if video is None:
|
197 |
+
raise gr.Error("Please upload a video.")
|
198 |
+
try:
|
199 |
+
outputs = []
|
200 |
+
for output in process_video(video, fps, seed, max_workers):
|
201 |
+
outputs.append(output)
|
202 |
+
yield output
|
203 |
+
return outputs[-1]
|
204 |
+
except Exception as e:
|
205 |
+
raise gr.Error(f"Error processing video: {str(e)}")
|
206 |
|
207 |
+
# Custom CSS for styling
|
208 |
+
custom_css = """
|
209 |
+
.title-container {
|
210 |
+
text-align: center;
|
211 |
+
padding: 10px 0;
|
212 |
+
}
|
213 |
+
|
214 |
+
#title {
|
215 |
+
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif;
|
216 |
+
font-size: 36px;
|
217 |
+
font-weight: bold;
|
218 |
+
color: #000000;
|
219 |
+
padding: 10px;
|
220 |
+
border-radius: 10px;
|
221 |
+
display: inline-block;
|
222 |
+
background: linear-gradient(
|
223 |
+
135deg,
|
224 |
+
#e0f7fa, #e8f5e9, #fff9c4, #ffebee,
|
225 |
+
#f3e5f5, #e1f5fe, #fff3e0, #e8eaf6
|
226 |
+
);
|
227 |
+
background-size: 400% 400%;
|
228 |
+
animation: gradient-animation 15s ease infinite;
|
229 |
+
}
|
230 |
+
|
231 |
+
@keyframes gradient-animation {
|
232 |
+
0% { background-position: 0% 50%; }
|
233 |
+
50% { background-position: 100% 50%; }
|
234 |
+
100% { background-position: 0% 50%; }
|
235 |
+
}
|
236 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
+
# Gradio Interface
|
239 |
+
with gr.Blocks(css=custom_css, theme=WhiteTheme()) as demo:
|
240 |
+
gr.HTML('''
|
241 |
+
<div class="title-container">
|
242 |
+
<div id="title">Video Depth Estimation</div>
|
243 |
+
</div>
|
244 |
+
''')
|
245 |
+
|
246 |
+
with gr.Row():
|
247 |
+
with gr.Column():
|
248 |
+
video_input = gr.Video(
|
249 |
+
label="Upload Video",
|
250 |
+
interactive=True,
|
251 |
+
show_label=True,
|
252 |
+
height=360,
|
253 |
+
width=640
|
254 |
)
|
255 |
+
with gr.Row():
|
256 |
+
fps_slider = gr.Slider(
|
257 |
+
minimum=0,
|
258 |
+
maximum=60,
|
259 |
+
step=1,
|
260 |
+
value=0,
|
261 |
+
label="Output FPS (0 will inherit the original fps value)",
|
262 |
+
)
|
263 |
+
seed_slider = gr.Slider(
|
264 |
+
minimum=0,
|
265 |
+
maximum=999999999,
|
266 |
+
step=1,
|
267 |
+
value=0,
|
268 |
+
label="Seed",
|
269 |
+
)
|
270 |
+
max_workers_slider = gr.Slider(
|
271 |
+
minimum=1,
|
272 |
+
maximum=32,
|
273 |
+
step=1,
|
274 |
+
value=6,
|
275 |
+
label="Max Workers",
|
276 |
+
info="Determines how many frames to process in parallel"
|
277 |
+
)
|
278 |
+
btn = gr.Button("Process Video", elem_id="submit-button")
|
279 |
+
|
280 |
+
with gr.Column():
|
281 |
+
preview_image = gr.Image(label="Live Preview", show_label=True)
|
282 |
+
output_frames_zip = gr.File(label="Download Frame Sequence (ZIP)")
|
283 |
+
output_video = gr.File(label="Download Video (MP4)")
|
284 |
+
time_textbox = gr.Textbox(label="Status", interactive=False)
|
285 |
+
|
286 |
+
gr.Markdown("""
|
287 |
+
### Output Information
|
288 |
+
- High-quality MP4 video output
|
289 |
+
- Original resolution and framerate are maintained
|
290 |
+
- Frame sequence provided for maximum compatibility
|
291 |
+
""")
|
292 |
|
293 |
+
btn.click(
|
294 |
+
fn=process_wrapper,
|
295 |
+
inputs=[video_input, fps_slider, seed_slider, max_workers_slider],
|
296 |
+
outputs=[preview_image, output_frames_zip, output_video, time_textbox]
|
297 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
+
demo.queue()
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
+
api = gr.Interface(
|
302 |
+
fn=process_wrapper,
|
303 |
+
inputs=[
|
304 |
+
gr.Video(label="Upload Video"),
|
305 |
+
gr.Number(label="FPS", value=0),
|
306 |
+
gr.Number(label="Seed", value=0),
|
307 |
+
gr.Number(label="Max Workers", value=6)
|
308 |
+
],
|
309 |
+
outputs=[
|
310 |
+
gr.Image(label="Preview"),
|
311 |
+
gr.File(label="Frame Sequence"),
|
312 |
+
gr.File(label="Video"),
|
313 |
+
gr.Textbox(label="Status")
|
314 |
+
],
|
315 |
+
title="Video Depth Estimation API",
|
316 |
+
description="Generate depth maps from videos",
|
317 |
+
api_name="/process_video"
|
318 |
+
)
|
319 |
|
320 |
if __name__ == "__main__":
|
321 |
+
demo.launch(debug=True, show_error=True, share=False, server_name="0.0.0.0", server_port=7860)
|