Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
# Load the trained model
|
8 |
+
MODEL_PATH = "resnet_model.pth" # Update with your actual model path
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
model = torch.load(MODEL_PATH, map_location=device)
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
# Define the image transformation pipeline
|
14 |
+
transform = transforms.Compose([
|
15 |
+
transforms.Resize((224, 224)),
|
16 |
+
transforms.ToTensor(),
|
17 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
18 |
+
])
|
19 |
+
|
20 |
+
# Streamlit UI
|
21 |
+
st.title("Saliva Disease Detection App")
|
22 |
+
st.subheader("Predict Streptococcosis vs NOT Streptococcosis from uploaded saliva images")
|
23 |
+
|
24 |
+
# Initialize session state for managing the uploaded file
|
25 |
+
if "uploaded_file" not in st.session_state:
|
26 |
+
st.session_state["uploaded_file"] = None
|
27 |
+
|
28 |
+
# File uploader
|
29 |
+
uploaded_file = st.file_uploader("Choose an image file", type=["jpg", "jpeg", "png"], key="file_uploader")
|
30 |
+
|
31 |
+
if uploaded_file is not None:
|
32 |
+
st.session_state["uploaded_file"] = uploaded_file
|
33 |
+
|
34 |
+
# If a file has been uploaded, process and predict
|
35 |
+
if st.session_state["uploaded_file"] is not None:
|
36 |
+
image = Image.open(st.session_state["uploaded_file"])
|
37 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
38 |
+
|
39 |
+
# Preprocess the image
|
40 |
+
input_image = transform(image).unsqueeze(0).to(device)
|
41 |
+
|
42 |
+
# Perform prediction
|
43 |
+
with torch.no_grad():
|
44 |
+
outputs = model(input_image)
|
45 |
+
probabilities = F.softmax(outputs, dim=1) # Convert to probabilities
|
46 |
+
_, predicted_class = torch.max(outputs, 1)
|
47 |
+
|
48 |
+
# Map predicted class to labels
|
49 |
+
class_names = ['Not_Streptococcosis', 'Streptococcosis']
|
50 |
+
predicted_label = class_names[predicted_class.item()]
|
51 |
+
predicted_probability = probabilities[0][predicted_class.item()].item() * 100 # Convert to percentage
|
52 |
+
|
53 |
+
# Display the result
|
54 |
+
st.write("### Prediction Result:")
|
55 |
+
if predicted_label == "Streptococcosis":
|
56 |
+
st.error(f"The sample is predicted as **{predicted_label}** with **{predicted_probability:.2f}%** probability.")
|
57 |
+
else:
|
58 |
+
st.success(f"The sample is predicted as **{predicted_label}** with **{predicted_probability:.2f}%** probability.")
|
59 |
+
|
60 |
+
# Show probabilities for all classes
|
61 |
+
st.write("### Class Probabilities:")
|
62 |
+
for idx, class_name in enumerate(class_names):
|
63 |
+
st.write(f"- **{class_name}**: {probabilities[0][idx].item() * 100:.2f}%")
|
64 |
+
|
65 |
+
# Button to reset the file uploader
|
66 |
+
if st.button("Upload Another Image"):
|
67 |
+
st.session_state["uploaded_file"] = None
|
68 |
+
st.rerun()
|