Spaces:
Runtime error
Runtime error
File size: 12,296 Bytes
4a88e70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
import os
import pickle
import re
import time
from typing import List, Union
from urllib.parse import urlparse, urljoin
import faiss
import requests
from PyPDF2 import PdfReader
from bs4 import BeautifulSoup
from langchain import OpenAI, LLMChain
from langchain.agents import ConversationalAgent
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.prompts import BaseChatPromptTemplate
from langchain.chains import ConversationalRetrievalChain
from langchain.docstore.document import Document
from langchain.embeddings import OpenAIEmbeddings
from langchain.memory import ConversationBufferWindowMemory
from langchain.schema import AgentAction, AgentFinish, HumanMessage
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.faiss import FAISS
book_url = 'https://g.co/kgs/2VFC7u'
book_file = "Book.pdf"
url = 'https://makerlab.illinois.edu/'
pickle_file = "open_ai.pkl"
index_file = "open_ai.index"
gpt_3_5 = OpenAI(model_name='gpt-3.5-turbo',temperature=0)
embeddings = OpenAIEmbeddings()
chat_history = []
memory = ConversationBufferWindowMemory(memory_key="chat_history")
gpt_3_5_index = None
class CustomOutputParser(AgentOutputParser):
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
# Check if agent replied without using tools
if "AI:" in llm_output:
return AgentFinish(return_values={"output": llm_output.split("AI:")[-1].strip()},
log=llm_output)
# Check if agent should finish
if "Final Answer:" in llm_output:
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": llm_output.split("Final Answer:")[-1].strip()},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action: (.*?)[\n]*Action Input:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2)
# Return the action and action input
return AgentAction(tool=action, tool_input=action_input.strip(" ").strip('"'), log=llm_output)
# Set up a prompt template
class CustomPromptTemplate(BaseChatPromptTemplate):
# The template to use
template: str
# The list of tools available
tools: List[Tool]
def format_messages(self, **kwargs) -> str:
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
thoughts = ""
for action, observation in intermediate_steps:
thoughts += action.log
thoughts += f"\nObservation: {observation}\nThought: "
# Set the agent_scratchpad variable to that value
kwargs["agent_scratchpad"] = thoughts
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
formatted = self.template.format(**kwargs)
return [HumanMessage(content=formatted)]
def get_search_index():
global gpt_3_5_index
if os.path.isfile(pickle_file) and os.path.isfile(index_file) and os.path.getsize(pickle_file) > 0:
# Load index from pickle file
with open(pickle_file, "rb") as f:
search_index = pickle.load(f)
else:
search_index = create_index()
gpt_3_5_index = search_index
def create_index():
source_chunks = create_chunk_documents()
search_index = search_index_from_docs(source_chunks)
faiss.write_index(search_index.index, index_file)
# Save index to pickle file
with open(pickle_file, "wb") as f:
pickle.dump(search_index, f)
return search_index
def create_chunk_documents():
sources = fetch_data_for_embeddings(url, book_file, book_url)
# print("sources" + str(len(sources)))
splitter = CharacterTextSplitter(separator=" ", chunk_size=800, chunk_overlap=0)
source_chunks = splitter.split_documents(sources)
for chunk in source_chunks:
print("Size of chunk: " + str(len(chunk.page_content) + len(chunk.metadata)))
if chunk.page_content is None or chunk.page_content == '':
print("removing chunk: "+ chunk.page_content)
source_chunks.remove(chunk)
elif len(chunk.page_content) >=1000:
print("splitting document")
source_chunks.extend(splitter.split_documents([chunk]))
# print("Chunks: " + str(len(source_chunks)) + "and type " + str(type(source_chunks)))
return source_chunks
def fetch_data_for_embeddings(url, book_file, book_url):
sources = get_website_data(url)
sources.extend(get_document_data(book_file, book_url))
return sources
def get_website_data(index_url):
# Get all page paths from index
paths = get_paths(index_url)
# Filter out invalid links and join them with the base URL
links = get_links(index_url, paths)
return get_content_from_links(links, index_url)
def get_content_from_links(links, index_url):
content_list = []
for link in set(links):
if link.startswith(index_url):
page_data = requests.get(link).content
soup = BeautifulSoup(page_data, "html.parser")
# Get page content
content = soup.get_text(separator="\n")
# print(link)
# Get page metadata
metadata = {"source": link}
content_list.append(Document(page_content=content, metadata=metadata))
time.sleep(1)
# print("content list" + str(len(content_list)))
return content_list
def get_paths(index_url):
index_data = requests.get(index_url).content
soup = BeautifulSoup(index_data, "html.parser")
paths = set([a.get('href') for a in soup.find_all('a', href=True)])
return paths
def get_links(index_url, paths):
links = []
for path in paths:
url = urljoin(index_url, path)
parsed_url = urlparse(url)
if parsed_url.scheme in ["http", "https"] and "squarespace" not in parsed_url.netloc:
links.append(url)
return links
def get_document_data(book_file, book_url):
document_list = []
with open(book_file, 'rb') as f:
pdf_reader = PdfReader(f)
for i in range(len(pdf_reader.pages)):
page_text = pdf_reader.pages[i].extract_text()
metadata = {"source": book_url}
document_list.append(Document(page_content=page_text, metadata=metadata))
# print("document list" + str(len(document_list)))
return document_list
def search_index_from_docs(source_chunks):
# Create index from chunk documents
# print("Size of chunk" + str(len(source_chunks)))
search_index = FAISS.from_texts([doc.page_content for doc in source_chunks], embeddings, metadatas=[doc.metadata for doc in source_chunks])
return search_index
def get_qa_chain(gpt_3_5_index):
global gpt_3_5
print("index: " + str(gpt_3_5_index))
return ConversationalRetrievalChain.from_llm(gpt_3_5, chain_type="stuff", get_chat_history=get_chat_history,
retriever=gpt_3_5_index.as_retriever(), return_source_documents=True, verbose=True)
def get_chat_history(inputs) -> str:
res = []
for human, ai in inputs:
res.append(f"Human:{human}\nAI:{ai}")
return "\n".join(res)
def generate_answer(question) -> str:
global chat_history, gpt_3_5_index
gpt_3_5_chain = get_qa_chain(gpt_3_5_index)
result = gpt_3_5_chain(
{"question": question, "chat_history": chat_history,"vectordbkwargs": {"search_distance": 0.8}})
print("REsult: " + str(result))
chat_history = [(question, result["answer"])]
sources = []
for document in result['source_documents']:
source = document.metadata['source']
sources.append(source)
source = ',\n'.join(set(sources))
return result['answer'] + '\nSOURCES: ' + source
def get_agent_chain(prompt, tools):
global gpt_3_5
# output_parser = CustomOutputParser()
llm_chain = LLMChain(llm=gpt_3_5, prompt=prompt)
agent = ConversationalAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory,
intermediate_steps=True)
return agent_chain
def get_prompt_and_tools():
tools = get_tools()
prefix = """Have a conversation with a human, answering the following questions as best you can.
Always try to use Vectorstore first.
Your name is Makerlab Bot because you are a personal assistant of Makerlab. You have access to the following tools:"""
suffix = """Begin! If you use any tool, ALWAYS return a "SOURCES" part in your answer"
{chat_history}
Question: {input}
{agent_scratchpad}
SOURCES:"""
prompt = ConversationalAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"]
)
# print("Template: " + prompt.template)
return prompt, tools
def get_tools():
tools = [
Tool(
name="Vectorstore",
func=generate_answer,
description="useful for when you need to answer questions about the Makerlab or 3D Printing.",
return_direct=True
)]
return tools
def get_custom_agent(prompt, tools):
llm_chain = LLMChain(llm=gpt_3_5, prompt=prompt)
output_parser = CustomOutputParser()
tool_names = [tool.name for tool in tools]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names
)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory,
intermediate_steps=True)
return agent_executor
def get_prompt_and_tools_for_custom_agent():
template = """
Have a conversation with a human, answering the following questions as best you can.
Always try to use Vectorstore first.
Your name is Makerlab Bot because you are a personal assistant of Makerlab. You have access to the following tools:
{tools}
To answer for the new input, use the following format:
New Input: the input question you must answer
Thought: Do I need to use a tool? Yes
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I now know the final answer
Final Answer: the final answer to the original input question. SOURCES: the sources referred to find the final answer
When you have a response to say to the Human and DO NOT need to use a tool:
1. DO NOT return "SOURCES" if you did not use any tool.
2. You MUST use this format:
```
Thought: Do I need to use a tool? No
AI: [your response here]
```
Begin! Remember to speak as a personal assistant when giving your final answer.
ALWAYS return a "SOURCES" part in your answer, if you used any tool.
Previous conversation history:
{chat_history}
New input: {input}
{agent_scratchpad}
SOURCES:"""
tools = get_tools()
prompt = CustomPromptTemplate(
template=template,
tools=tools,
# This omits the `agent_scratchpad`, `tools`, and `tool_names` variables because those are generated dynamically
# This includes the `intermediate_steps` variable because that is needed
input_variables=["input", "intermediate_steps", "chat_history"]
)
return prompt, tools |