Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ import tempfile
|
|
2 |
import time
|
3 |
from collections.abc import Sequence
|
4 |
from typing import Any, cast
|
|
|
|
|
5 |
|
6 |
import gradio as gr
|
7 |
import numpy as np
|
@@ -15,21 +17,17 @@ from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
|
|
15 |
from refiners.fluxion.utils import no_grad
|
16 |
from refiners.solutions import BoxSegmenter
|
17 |
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
18 |
-
|
19 |
-
import spaces
|
20 |
-
import argparse
|
21 |
-
import os
|
22 |
-
from os import path
|
23 |
-
import shutil
|
24 |
-
from datetime import datetime
|
25 |
-
from safetensors.torch import load_file
|
26 |
-
from huggingface_hub import hf_hub_download
|
27 |
-
import gradio as gr
|
28 |
from diffusers import FluxPipeline
|
29 |
-
from PIL import Image
|
30 |
-
from huggingface_hub import login
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
34 |
if HF_TOKEN is None:
|
35 |
raise ValueError("Please set the HF_TOKEN environment variable")
|
@@ -39,40 +37,7 @@ try:
|
|
39 |
except Exception as e:
|
40 |
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
|
41 |
|
42 |
-
#
|
43 |
-
def initialize_pipeline():
|
44 |
-
try:
|
45 |
-
pipe = FluxPipeline.from_pretrained(
|
46 |
-
"black-forest-labs/FLUX.1-dev",
|
47 |
-
torch_dtype=torch.bfloat16,
|
48 |
-
use_auth_token=HF_TOKEN
|
49 |
-
)
|
50 |
-
pipe.load_lora_weights(
|
51 |
-
hf_hub_download(
|
52 |
-
"ByteDance/Hyper-SD",
|
53 |
-
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
|
54 |
-
use_auth_token=HF_TOKEN
|
55 |
-
)
|
56 |
-
)
|
57 |
-
pipe.fuse_lora(lora_scale=0.125)
|
58 |
-
pipe.to(device="cuda", dtype=torch.bfloat16)
|
59 |
-
return pipe
|
60 |
-
except Exception as e:
|
61 |
-
raise ValueError(f"Failed to initialize pipeline: {str(e)}")
|
62 |
-
# νμ΄νλΌμΈ μ΄κΈ°ν
|
63 |
-
try:
|
64 |
-
pipe = initialize_pipeline()
|
65 |
-
except Exception as e:
|
66 |
-
raise RuntimeError(f"Failed to setup the model: {str(e)}")
|
67 |
-
|
68 |
-
BoundingBox = tuple[int, int, int, int]
|
69 |
-
|
70 |
-
pillow_heif.register_heif_opener()
|
71 |
-
pillow_heif.register_avif_opener()
|
72 |
-
|
73 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
74 |
-
|
75 |
-
# weird dance because ZeroGPU
|
76 |
segmenter = BoxSegmenter(device="cpu")
|
77 |
segmenter.device = device
|
78 |
segmenter.model = segmenter.model.to(device=segmenter.device)
|
@@ -80,66 +45,25 @@ segmenter.model = segmenter.model.to(device=segmenter.device)
|
|
80 |
gd_model_path = "IDEA-Research/grounding-dino-base"
|
81 |
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
|
82 |
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
|
83 |
-
gd_model = gd_model.to(device=device)
|
84 |
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
85 |
|
86 |
-
# FLUX νμ΄νλΌμΈ μ΄κΈ°ν
|
87 |
-
pipe = FluxPipeline.from_pretrained(
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
pipe.fuse_lora(lora_scale=0.125)
|
90 |
pipe.to(device="cuda", dtype=torch.bfloat16)
|
91 |
|
92 |
-
def generate_background(prompt: str, width: int, height: int) -> Image.Image:
|
93 |
-
"""λ°°κ²½ μ΄λ―Έμ§ μμ± ν¨μ"""
|
94 |
-
try:
|
95 |
-
with timer("Background generation"):
|
96 |
-
image = pipe(
|
97 |
-
prompt=prompt,
|
98 |
-
width=width,
|
99 |
-
height=height,
|
100 |
-
num_inference_steps=8,
|
101 |
-
guidance_scale=4.0,
|
102 |
-
).images[0]
|
103 |
-
return image
|
104 |
-
except Exception as e:
|
105 |
-
raise gr.Error(f"Background generation failed: {str(e)}") # κ΄νΈ λ«κΈ° μμ
|
106 |
-
|
107 |
-
|
108 |
-
def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image:
|
109 |
-
"""μ κ²½κ³Ό λ°°κ²½ ν©μ± ν¨μ"""
|
110 |
-
background = background.resize(foreground.size)
|
111 |
-
return Image.alpha_composite(background.convert('RGBA'), foreground)
|
112 |
-
|
113 |
-
def _process(
|
114 |
-
img: Image.Image,
|
115 |
-
prompt: str | BoundingBox | None,
|
116 |
-
bg_prompt: str | None,
|
117 |
-
) -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
|
118 |
-
try:
|
119 |
-
# κΈ°μ‘΄ κ°μ²΄ μΆμΆ λ‘μ§
|
120 |
-
mask, bbox, time_log = _gpu_process(img, prompt)
|
121 |
-
masked_alpha = apply_mask(img, mask, defringe=True)
|
122 |
-
|
123 |
-
# λ°°κ²½ μμ± λ° ν©μ±
|
124 |
-
if bg_prompt:
|
125 |
-
background = generate_background(bg_prompt, img.width, img.height)
|
126 |
-
combined = combine_with_background(masked_alpha, background)
|
127 |
-
else:
|
128 |
-
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
|
129 |
-
|
130 |
-
# μ μ₯ λ‘μ§
|
131 |
-
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
|
132 |
-
bbox = thresholded.getbbox()
|
133 |
-
to_dl = masked_alpha.crop(bbox)
|
134 |
-
|
135 |
-
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
136 |
-
to_dl.save(temp, format="PNG")
|
137 |
-
temp.close()
|
138 |
-
|
139 |
-
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
|
140 |
-
except Exception as e:
|
141 |
-
raise gr.Error(f"Processing failed: {str(e)}")
|
142 |
-
|
143 |
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
|
144 |
if not bboxes:
|
145 |
return None
|
@@ -153,18 +77,12 @@ def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
|
|
153 |
max(bbox[3] for bbox in bboxes),
|
154 |
)
|
155 |
|
156 |
-
|
157 |
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
|
158 |
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
|
159 |
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
|
160 |
|
161 |
-
|
162 |
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
|
163 |
-
assert isinstance(gd_processor, GroundingDinoProcessor)
|
164 |
-
|
165 |
-
# Grounding Dino expects a dot after each category.
|
166 |
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
|
167 |
-
|
168 |
with no_grad():
|
169 |
outputs = gd_model(**inputs)
|
170 |
width, height = img.size
|
@@ -174,41 +92,44 @@ def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
|
|
174 |
target_sizes=[(height, width)],
|
175 |
)[0]
|
176 |
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
|
177 |
-
|
178 |
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
|
179 |
return bbox_union(bboxes.numpy().tolist())
|
180 |
|
181 |
-
|
182 |
-
def apply_mask(
|
183 |
-
img: Image.Image,
|
184 |
-
mask_img: Image.Image,
|
185 |
-
defringe: bool = True,
|
186 |
-
) -> Image.Image:
|
187 |
assert img.size == mask_img.size
|
188 |
img = img.convert("RGB")
|
189 |
mask_img = mask_img.convert("L")
|
190 |
-
|
191 |
if defringe:
|
192 |
-
# Mitigate edge halo effects via color decontamination
|
193 |
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
|
194 |
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
|
195 |
img = Image.fromarray((foreground * 255).astype("uint8"))
|
196 |
-
|
197 |
result = Image.new("RGBA", img.size)
|
198 |
result.paste(img, (0, 0), mask_img)
|
199 |
return result
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
) -> tuple[Image.Image, BoundingBox | None, list[str]]:
|
207 |
-
# Because of ZeroGPU shenanigans, we need a *single* function with the
|
208 |
-
# `spaces.GPU` decorator that *does not* contain postprocessing.
|
209 |
|
|
|
|
|
210 |
time_log: list[str] = []
|
211 |
-
|
212 |
if isinstance(prompt, str):
|
213 |
t0 = time.time()
|
214 |
bbox = gd_detect(img, prompt)
|
@@ -218,16 +139,40 @@ def _gpu_process(
|
|
218 |
raise gr.Error("No object detected")
|
219 |
else:
|
220 |
bbox = prompt
|
221 |
-
|
222 |
t0 = time.time()
|
223 |
mask = segmenter(img, bbox)
|
224 |
time_log.append(f"segment: {time.time() - t0}")
|
225 |
-
|
226 |
return mask, bbox, time_log
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
|
|
|
|
229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
|
|
231 |
|
232 |
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
|
233 |
assert isinstance(img := prompts["image"], Image.Image)
|
@@ -240,45 +185,42 @@ def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Imag
|
|
240 |
bbox = None
|
241 |
return _process(img, bbox)
|
242 |
|
243 |
-
|
244 |
def on_change_bbox(prompts: dict[str, Any] | None):
|
245 |
return gr.update(interactive=prompts is not None)
|
246 |
|
|
|
|
|
247 |
|
248 |
-
def
|
249 |
-
return _process(img, prompt)
|
250 |
-
|
251 |
-
|
252 |
-
def on_change_prompt(img: Image.Image | None, prompt: str | None):
|
253 |
return gr.update(interactive=bool(img and prompt))
|
254 |
|
255 |
-
|
256 |
css = """
|
257 |
-
footer {
|
258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
}
|
260 |
"""
|
261 |
|
262 |
-
#
|
263 |
-
css = """
|
264 |
-
footer {visibility: hidden}
|
265 |
-
.container {max-width: 1200px; margin: auto; padding: 20px;}
|
266 |
-
.main-title {text-align: center; color: #2a2a2a; margin-bottom: 2em;}
|
267 |
-
.tabs {background: #f7f7f7; border-radius: 15px; padding: 20px;}
|
268 |
-
.input-column {background: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 6px rgba(0,0,0,0.1);}
|
269 |
-
.output-column {background: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 6px rgba(0,0,0,0.1);}
|
270 |
-
.custom-button {background: #2196F3; color: white; border: none; border-radius: 5px; padding: 10px 20px;}
|
271 |
-
.custom-button:hover {background: #1976D2;}
|
272 |
-
.example-region {margin-top: 2em; padding: 20px; background: #f0f0f0; border-radius: 10px;}
|
273 |
-
"""
|
274 |
-
|
275 |
-
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str = None) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
|
276 |
-
return _process(img, prompt, bg_prompt)
|
277 |
-
|
278 |
-
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
|
279 |
-
return gr.update(interactive=bool(img and prompt))
|
280 |
-
|
281 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
with gr.Tabs() as tabs:
|
283 |
with gr.Tab("β¨ Extract by Text", id="tab_prompt"):
|
284 |
with gr.Row(equal_height=True):
|
@@ -316,26 +258,8 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
316 |
|
317 |
with gr.Accordion("π Examples", open=False):
|
318 |
examples = [
|
319 |
-
|
320 |
-
|
321 |
-
"prompt": "text",
|
322 |
-
"bg_prompt": "white background"
|
323 |
-
},
|
324 |
-
{
|
325 |
-
"image": "examples/potted-plant.jpg",
|
326 |
-
"prompt": "potted plant",
|
327 |
-
"bg_prompt": "natural garden background"
|
328 |
-
},
|
329 |
-
{
|
330 |
-
"image": "examples/chair.jpg",
|
331 |
-
"prompt": "chair",
|
332 |
-
"bg_prompt": "modern living room"
|
333 |
-
},
|
334 |
-
{
|
335 |
-
"image": "examples/black-lamp.jpg",
|
336 |
-
"prompt": "black lamp",
|
337 |
-
"bg_prompt": "minimalist interior"
|
338 |
-
}
|
339 |
]
|
340 |
ex = gr.Examples(
|
341 |
examples=examples,
|
@@ -345,7 +269,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
345 |
cache_examples=True
|
346 |
)
|
347 |
|
348 |
-
# Bounding Box ν
|
349 |
with gr.Tab("π Extract by Box", id="tab_bb"):
|
350 |
with gr.Row(equal_height=True):
|
351 |
with gr.Column(scale=1, min_width=400):
|
@@ -377,22 +300,8 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
377 |
|
378 |
with gr.Accordion("π Examples", open=False):
|
379 |
examples_bb = [
|
380 |
-
{
|
381 |
-
|
382 |
-
"boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}]
|
383 |
-
},
|
384 |
-
{
|
385 |
-
"image": "examples/potted-plant.jpg",
|
386 |
-
"boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}]
|
387 |
-
},
|
388 |
-
{
|
389 |
-
"image": "examples/chair.jpg",
|
390 |
-
"boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}]
|
391 |
-
},
|
392 |
-
{
|
393 |
-
"image": "examples/black-lamp.jpg",
|
394 |
-
"boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}]
|
395 |
-
}
|
396 |
]
|
397 |
ex_bb = gr.Examples(
|
398 |
examples=examples_bb,
|
|
|
2 |
import time
|
3 |
from collections.abc import Sequence
|
4 |
from typing import Any, cast
|
5 |
+
import os
|
6 |
+
from huggingface_hub import login
|
7 |
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
|
|
17 |
from refiners.fluxion.utils import no_grad
|
18 |
from refiners.solutions import BoxSegmenter
|
19 |
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
from diffusers import FluxPipeline
|
|
|
|
|
21 |
|
22 |
+
BoundingBox = tuple[int, int, int, int]
|
23 |
+
|
24 |
+
# μ΄κΈ°ν λ° μ€μ
|
25 |
+
pillow_heif.register_heif_opener()
|
26 |
+
pillow_heif.register_avif_opener()
|
27 |
+
|
28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
|
30 |
+
# HF ν ν° μ€μ
|
31 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
32 |
if HF_TOKEN is None:
|
33 |
raise ValueError("Please set the HF_TOKEN environment variable")
|
|
|
37 |
except Exception as e:
|
38 |
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
|
39 |
|
40 |
+
# λͺ¨λΈ μ΄κΈ°ν
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
segmenter = BoxSegmenter(device="cpu")
|
42 |
segmenter.device = device
|
43 |
segmenter.model = segmenter.model.to(device=segmenter.device)
|
|
|
45 |
gd_model_path = "IDEA-Research/grounding-dino-base"
|
46 |
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
|
47 |
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
|
48 |
+
gd_model = gd_model.to(device=device)
|
49 |
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
50 |
|
51 |
+
# FLUX νμ΄νλΌμΈ μ΄κΈ°ν
|
52 |
+
pipe = FluxPipeline.from_pretrained(
|
53 |
+
"black-forest-labs/FLUX.1-dev",
|
54 |
+
torch_dtype=torch.bfloat16,
|
55 |
+
use_auth_token=HF_TOKEN
|
56 |
+
)
|
57 |
+
pipe.load_lora_weights(
|
58 |
+
hf_hub_download(
|
59 |
+
"ByteDance/Hyper-SD",
|
60 |
+
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
|
61 |
+
use_auth_token=HF_TOKEN
|
62 |
+
)
|
63 |
+
)
|
64 |
pipe.fuse_lora(lora_scale=0.125)
|
65 |
pipe.to(device="cuda", dtype=torch.bfloat16)
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
|
68 |
if not bboxes:
|
69 |
return None
|
|
|
77 |
max(bbox[3] for bbox in bboxes),
|
78 |
)
|
79 |
|
|
|
80 |
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
|
81 |
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
|
82 |
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
|
83 |
|
|
|
84 |
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
|
|
|
|
|
|
|
85 |
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
|
|
|
86 |
with no_grad():
|
87 |
outputs = gd_model(**inputs)
|
88 |
width, height = img.size
|
|
|
92 |
target_sizes=[(height, width)],
|
93 |
)[0]
|
94 |
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
|
|
|
95 |
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
|
96 |
return bbox_union(bboxes.numpy().tolist())
|
97 |
|
98 |
+
def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
99 |
assert img.size == mask_img.size
|
100 |
img = img.convert("RGB")
|
101 |
mask_img = mask_img.convert("L")
|
|
|
102 |
if defringe:
|
|
|
103 |
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
|
104 |
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
|
105 |
img = Image.fromarray((foreground * 255).astype("uint8"))
|
|
|
106 |
result = Image.new("RGBA", img.size)
|
107 |
result.paste(img, (0, 0), mask_img)
|
108 |
return result
|
109 |
|
110 |
+
def generate_background(prompt: str, width: int, height: int) -> Image.Image:
|
111 |
+
"""λ°°κ²½ μ΄λ―Έμ§ μμ± ν¨μ"""
|
112 |
+
try:
|
113 |
+
with timer("Background generation"):
|
114 |
+
image = pipe(
|
115 |
+
prompt=prompt,
|
116 |
+
width=width,
|
117 |
+
height=height,
|
118 |
+
num_inference_steps=8,
|
119 |
+
guidance_scale=4.0,
|
120 |
+
).images[0]
|
121 |
+
return image
|
122 |
+
except Exception as e:
|
123 |
+
raise gr.Error(f"Background generation failed: {str(e)}")
|
124 |
|
125 |
+
def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image:
|
126 |
+
"""μ κ²½κ³Ό λ°°κ²½ ν©μ± ν¨μ"""
|
127 |
+
background = background.resize(foreground.size)
|
128 |
+
return Image.alpha_composite(background.convert('RGBA'), foreground)
|
|
|
|
|
|
|
129 |
|
130 |
+
@spaces.GPU
|
131 |
+
def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]:
|
132 |
time_log: list[str] = []
|
|
|
133 |
if isinstance(prompt, str):
|
134 |
t0 = time.time()
|
135 |
bbox = gd_detect(img, prompt)
|
|
|
139 |
raise gr.Error("No object detected")
|
140 |
else:
|
141 |
bbox = prompt
|
|
|
142 |
t0 = time.time()
|
143 |
mask = segmenter(img, bbox)
|
144 |
time_log.append(f"segment: {time.time() - t0}")
|
|
|
145 |
return mask, bbox, time_log
|
146 |
|
147 |
+
def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
|
148 |
+
if img.width > 2048 or img.height > 2048:
|
149 |
+
orig_res = max(img.width, img.height)
|
150 |
+
img.thumbnail((2048, 2048))
|
151 |
+
if isinstance(prompt, tuple):
|
152 |
+
x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt)
|
153 |
+
prompt = (x0, y0, x1, y1)
|
154 |
|
155 |
+
mask, bbox, time_log = _gpu_process(img, prompt)
|
156 |
+
masked_alpha = apply_mask(img, mask, defringe=True)
|
157 |
|
158 |
+
if bg_prompt:
|
159 |
+
try:
|
160 |
+
background = generate_background(bg_prompt, img.width, img.height)
|
161 |
+
combined = combine_with_background(masked_alpha, background)
|
162 |
+
except Exception as e:
|
163 |
+
raise gr.Error(f"Background processing failed: {str(e)}")
|
164 |
+
else:
|
165 |
+
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
|
166 |
+
|
167 |
+
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
|
168 |
+
bbox = thresholded.getbbox()
|
169 |
+
to_dl = masked_alpha.crop(bbox)
|
170 |
+
|
171 |
+
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
172 |
+
to_dl.save(temp, format="PNG")
|
173 |
+
temp.close()
|
174 |
|
175 |
+
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
|
176 |
|
177 |
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
|
178 |
assert isinstance(img := prompts["image"], Image.Image)
|
|
|
185 |
bbox = None
|
186 |
return _process(img, bbox)
|
187 |
|
|
|
188 |
def on_change_bbox(prompts: dict[str, Any] | None):
|
189 |
return gr.update(interactive=prompts is not None)
|
190 |
|
191 |
+
def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
|
192 |
+
return _process(img, prompt, bg_prompt)
|
193 |
|
194 |
+
def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None):
|
|
|
|
|
|
|
|
|
195 |
return gr.update(interactive=bool(img and prompt))
|
196 |
|
197 |
+
# CSS μ€νμΌ μ μ
|
198 |
css = """
|
199 |
+
footer {display: none}
|
200 |
+
.main-title {
|
201 |
+
text-align: center;
|
202 |
+
margin: 2em 0;
|
203 |
+
}
|
204 |
+
.main-title h1 {
|
205 |
+
color: #2196F3;
|
206 |
+
font-size: 2.5em;
|
207 |
+
}
|
208 |
+
.container {
|
209 |
+
max-width: 1200px;
|
210 |
+
margin: auto;
|
211 |
+
padding: 20px;
|
212 |
}
|
213 |
"""
|
214 |
|
215 |
+
# Gradio UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
217 |
+
gr.HTML("""
|
218 |
+
<div class="main-title">
|
219 |
+
<h1>π¨ Advanced Image Object Extractor</h1>
|
220 |
+
<p>Extract objects from images using text prompts or bounding boxes</p>
|
221 |
+
</div>
|
222 |
+
""")
|
223 |
+
|
224 |
with gr.Tabs() as tabs:
|
225 |
with gr.Tab("β¨ Extract by Text", id="tab_prompt"):
|
226 |
with gr.Row(equal_height=True):
|
|
|
258 |
|
259 |
with gr.Accordion("π Examples", open=False):
|
260 |
examples = [
|
261 |
+
["examples/text.jpg", "text", "white background"],
|
262 |
+
["examples/black-lamp.jpg", "black lamp", "minimalist interior"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
]
|
264 |
ex = gr.Examples(
|
265 |
examples=examples,
|
|
|
269 |
cache_examples=True
|
270 |
)
|
271 |
|
|
|
272 |
with gr.Tab("π Extract by Box", id="tab_bb"):
|
273 |
with gr.Row(equal_height=True):
|
274 |
with gr.Column(scale=1, min_width=400):
|
|
|
300 |
|
301 |
with gr.Accordion("π Examples", open=False):
|
302 |
examples_bb = [
|
303 |
+
["examples/text.jpg", [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}]],
|
304 |
+
["examples/black-lamp.jpg", [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
]
|
306 |
ex_bb = gr.Examples(
|
307 |
examples=examples_bb,
|