Delete src/app.py
Browse files- src/app.py +0 -453
src/app.py
DELETED
@@ -1,453 +0,0 @@
|
|
1 |
-
import tempfile
|
2 |
-
import time
|
3 |
-
from collections.abc import Sequence
|
4 |
-
from typing import Any, cast
|
5 |
-
|
6 |
-
import gradio as gr
|
7 |
-
import numpy as np
|
8 |
-
import pillow_heif
|
9 |
-
import spaces
|
10 |
-
import torch
|
11 |
-
from gradio_image_annotation import image_annotator
|
12 |
-
from gradio_imageslider import ImageSlider
|
13 |
-
from PIL import Image
|
14 |
-
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
|
15 |
-
from refiners.fluxion.utils import no_grad
|
16 |
-
from refiners.solutions import BoxSegmenter
|
17 |
-
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
|
18 |
-
|
19 |
-
import spaces
|
20 |
-
import argparse
|
21 |
-
import os
|
22 |
-
from os import path
|
23 |
-
import shutil
|
24 |
-
from datetime import datetime
|
25 |
-
from safetensors.torch import load_file
|
26 |
-
from huggingface_hub import hf_hub_download
|
27 |
-
import gradio as gr
|
28 |
-
from diffusers import FluxPipeline
|
29 |
-
from PIL import Image
|
30 |
-
from huggingface_hub import login
|
31 |
-
|
32 |
-
# HF ํ ํฐ ์ธ์ฆ ์ฒ๋ฆฌ
|
33 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
34 |
-
if HF_TOKEN is None:
|
35 |
-
raise ValueError("Please set the HF_TOKEN environment variable")
|
36 |
-
|
37 |
-
try:
|
38 |
-
login(token=HF_TOKEN)
|
39 |
-
except Exception as e:
|
40 |
-
raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
|
41 |
-
|
42 |
-
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ ์์
|
43 |
-
def initialize_pipeline():
|
44 |
-
try:
|
45 |
-
pipe = FluxPipeline.from_pretrained(
|
46 |
-
"black-forest-labs/FLUX.1-dev",
|
47 |
-
torch_dtype=torch.bfloat16,
|
48 |
-
use_auth_token=HF_TOKEN
|
49 |
-
)
|
50 |
-
pipe.load_lora_weights(
|
51 |
-
hf_hub_download(
|
52 |
-
"ByteDance/Hyper-SD",
|
53 |
-
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
|
54 |
-
use_auth_token=HF_TOKEN
|
55 |
-
)
|
56 |
-
)
|
57 |
-
pipe.fuse_lora(lora_scale=0.125)
|
58 |
-
pipe.to(device="cuda", dtype=torch.bfloat16)
|
59 |
-
return pipe
|
60 |
-
except Exception as e:
|
61 |
-
raise ValueError(f"Failed to initialize pipeline: {str(e)}")
|
62 |
-
# ํ์ดํ๋ผ์ธ ์ด๊ธฐํ
|
63 |
-
try:
|
64 |
-
pipe = initialize_pipeline()
|
65 |
-
except Exception as e:
|
66 |
-
raise RuntimeError(f"Failed to setup the model: {str(e)}")
|
67 |
-
|
68 |
-
BoundingBox = tuple[int, int, int, int]
|
69 |
-
|
70 |
-
pillow_heif.register_heif_opener()
|
71 |
-
pillow_heif.register_avif_opener()
|
72 |
-
|
73 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
74 |
-
|
75 |
-
# weird dance because ZeroGPU
|
76 |
-
segmenter = BoxSegmenter(device="cpu")
|
77 |
-
segmenter.device = device
|
78 |
-
segmenter.model = segmenter.model.to(device=segmenter.device)
|
79 |
-
|
80 |
-
gd_model_path = "IDEA-Research/grounding-dino-base"
|
81 |
-
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
|
82 |
-
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
|
83 |
-
gd_model = gd_model.to(device=device) # type: ignore
|
84 |
-
assert isinstance(gd_model, GroundingDinoForObjectDetection)
|
85 |
-
|
86 |
-
# FLUX ํ์ดํ๋ผ์ธ ์ด๊ธฐํ ์ฝ๋ ์ถ๊ฐ
|
87 |
-
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
|
88 |
-
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
|
89 |
-
pipe.fuse_lora(lora_scale=0.125)
|
90 |
-
pipe.to(device="cuda", dtype=torch.bfloat16)
|
91 |
-
|
92 |
-
def generate_background(prompt: str, width: int, height: int) -> Image.Image:
|
93 |
-
"""๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง ์์ฑ ํจ์"""
|
94 |
-
try:
|
95 |
-
with timer("Background generation"):
|
96 |
-
image = pipe(
|
97 |
-
prompt=prompt,
|
98 |
-
width=width,
|
99 |
-
height=height,
|
100 |
-
num_inference_steps=8,
|
101 |
-
guidance_scale=4.0,
|
102 |
-
).images[0]
|
103 |
-
return image
|
104 |
-
except Exception as e:
|
105 |
-
raise gr.Error(f"Background generation failed: {str(e)}") # ๊ดํธ ๋ซ๊ธฐ ์์
|
106 |
-
|
107 |
-
|
108 |
-
def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image:
|
109 |
-
"""์ ๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํฉ์ฑ ํจ์"""
|
110 |
-
background = background.resize(foreground.size)
|
111 |
-
return Image.alpha_composite(background.convert('RGBA'), foreground)
|
112 |
-
|
113 |
-
def _process(
|
114 |
-
img: Image.Image,
|
115 |
-
prompt: str | BoundingBox | None,
|
116 |
-
bg_prompt: str | None,
|
117 |
-
) -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
|
118 |
-
try:
|
119 |
-
# ๊ธฐ์กด ๊ฐ์ฒด ์ถ์ถ ๋ก์ง
|
120 |
-
mask, bbox, time_log = _gpu_process(img, prompt)
|
121 |
-
masked_alpha = apply_mask(img, mask, defringe=True)
|
122 |
-
|
123 |
-
# ๋ฐฐ๊ฒฝ ์์ฑ ๋ฐ ํฉ์ฑ
|
124 |
-
if bg_prompt:
|
125 |
-
background = generate_background(bg_prompt, img.width, img.height)
|
126 |
-
combined = combine_with_background(masked_alpha, background)
|
127 |
-
else:
|
128 |
-
combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
|
129 |
-
|
130 |
-
# ์ ์ฅ ๋ก์ง
|
131 |
-
thresholded = mask.point(lambda p: 255 if p > 10 else 0)
|
132 |
-
bbox = thresholded.getbbox()
|
133 |
-
to_dl = masked_alpha.crop(bbox)
|
134 |
-
|
135 |
-
temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
136 |
-
to_dl.save(temp, format="PNG")
|
137 |
-
temp.close()
|
138 |
-
|
139 |
-
return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
|
140 |
-
except Exception as e:
|
141 |
-
raise gr.Error(f"Processing failed: {str(e)}")
|
142 |
-
|
143 |
-
def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
|
144 |
-
if not bboxes:
|
145 |
-
return None
|
146 |
-
for bbox in bboxes:
|
147 |
-
assert len(bbox) == 4
|
148 |
-
assert all(isinstance(x, int) for x in bbox)
|
149 |
-
return (
|
150 |
-
min(bbox[0] for bbox in bboxes),
|
151 |
-
min(bbox[1] for bbox in bboxes),
|
152 |
-
max(bbox[2] for bbox in bboxes),
|
153 |
-
max(bbox[3] for bbox in bboxes),
|
154 |
-
)
|
155 |
-
|
156 |
-
|
157 |
-
def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
|
158 |
-
x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
|
159 |
-
return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
|
160 |
-
|
161 |
-
|
162 |
-
def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
|
163 |
-
assert isinstance(gd_processor, GroundingDinoProcessor)
|
164 |
-
|
165 |
-
# Grounding Dino expects a dot after each category.
|
166 |
-
inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
|
167 |
-
|
168 |
-
with no_grad():
|
169 |
-
outputs = gd_model(**inputs)
|
170 |
-
width, height = img.size
|
171 |
-
results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
|
172 |
-
outputs,
|
173 |
-
inputs["input_ids"],
|
174 |
-
target_sizes=[(height, width)],
|
175 |
-
)[0]
|
176 |
-
assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
|
177 |
-
|
178 |
-
bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
|
179 |
-
return bbox_union(bboxes.numpy().tolist())
|
180 |
-
|
181 |
-
|
182 |
-
def apply_mask(
|
183 |
-
img: Image.Image,
|
184 |
-
mask_img: Image.Image,
|
185 |
-
defringe: bool = True,
|
186 |
-
) -> Image.Image:
|
187 |
-
assert img.size == mask_img.size
|
188 |
-
img = img.convert("RGB")
|
189 |
-
mask_img = mask_img.convert("L")
|
190 |
-
|
191 |
-
if defringe:
|
192 |
-
# Mitigate edge halo effects via color decontamination
|
193 |
-
rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
|
194 |
-
foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
|
195 |
-
img = Image.fromarray((foreground * 255).astype("uint8"))
|
196 |
-
|
197 |
-
result = Image.new("RGBA", img.size)
|
198 |
-
result.paste(img, (0, 0), mask_img)
|
199 |
-
return result
|
200 |
-
|
201 |
-
|
202 |
-
@spaces.GPU
|
203 |
-
def _gpu_process(
|
204 |
-
img: Image.Image,
|
205 |
-
prompt: str | BoundingBox | None,
|
206 |
-
) -> tuple[Image.Image, BoundingBox | None, list[str]]:
|
207 |
-
# Because of ZeroGPU shenanigans, we need a *single* function with the
|
208 |
-
# `spaces.GPU` decorator that *does not* contain postprocessing.
|
209 |
-
|
210 |
-
time_log: list[str] = []
|
211 |
-
|
212 |
-
if isinstance(prompt, str):
|
213 |
-
t0 = time.time()
|
214 |
-
bbox = gd_detect(img, prompt)
|
215 |
-
time_log.append(f"detect: {time.time() - t0}")
|
216 |
-
if not bbox:
|
217 |
-
print(time_log[0])
|
218 |
-
raise gr.Error("No object detected")
|
219 |
-
else:
|
220 |
-
bbox = prompt
|
221 |
-
|
222 |
-
t0 = time.time()
|
223 |
-
mask = segmenter(img, bbox)
|
224 |
-
time_log.append(f"segment: {time.time() - t0}")
|
225 |
-
|
226 |
-
return mask, bbox, time_log
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
|
233 |
-
assert isinstance(img := prompts["image"], Image.Image)
|
234 |
-
assert isinstance(boxes := prompts["boxes"], list)
|
235 |
-
if len(boxes) == 1:
|
236 |
-
assert isinstance(box := boxes[0], dict)
|
237 |
-
bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"])
|
238 |
-
else:
|
239 |
-
assert len(boxes) == 0
|
240 |
-
bbox = None
|
241 |
-
return _process(img, bbox)
|
242 |
-
|
243 |
-
|
244 |
-
def on_change_bbox(prompts: dict[str, Any] | None):
|
245 |
-
return gr.update(interactive=prompts is not None)
|
246 |
-
|
247 |
-
|
248 |
-
def process_prompt(img: Image.Image, prompt: str) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
|
249 |
-
return _process(img, prompt)
|
250 |
-
|
251 |
-
|
252 |
-
def on_change_prompt(img: Image.Image | None, prompt: str | None):
|
253 |
-
return gr.update(interactive=bool(img and prompt))
|
254 |
-
|
255 |
-
|
256 |
-
css = """
|
257 |
-
footer {
|
258 |
-
visibility: hidden;
|
259 |
-
}
|
260 |
-
"""
|
261 |
-
|
262 |
-
# ์คํ์ผ ์ ์ ์ถ๊ฐ
|
263 |
-
css = """
|
264 |
-
footer {visibility: hidden}
|
265 |
-
.container {max-width: 1200px; margin: auto; padding: 20px;}
|
266 |
-
.main-title {text-align: center; color: #2a2a2a; margin-bottom: 2em;}
|
267 |
-
.tabs {background: #f7f7f7; border-radius: 15px; padding: 20px;}
|
268 |
-
.input-column {background: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 6px rgba(0,0,0,0.1);}
|
269 |
-
.output-column {background: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 6px rgba(0,0,0,0.1);}
|
270 |
-
.custom-button {background: #2196F3; color: white; border: none; border-radius: 5px; padding: 10px 20px;}
|
271 |
-
.custom-button:hover {background: #1976D2;}
|
272 |
-
.example-region {margin-top: 2em; padding: 20px; background: #f0f0f0; border-radius: 10px;}
|
273 |
-
"""
|
274 |
-
|
275 |
-
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
276 |
-
gr.HTML("""
|
277 |
-
<div class="main-title">
|
278 |
-
<h1>๐จ Advanced Image Object Extractor</h1>
|
279 |
-
<p>Extract objects from images using text prompts or bounding boxes</p>
|
280 |
-
</div>
|
281 |
-
""")
|
282 |
-
|
283 |
-
with gr.Tabs() as tabs:
|
284 |
-
with gr.Tab("โจ Extract by Text", id="tab_prompt"):
|
285 |
-
with gr.Row(equal_height=True):
|
286 |
-
with gr.Column(scale=1, min_width=400):
|
287 |
-
gr.HTML("<h3>๐ฅ Input Section</h3>")
|
288 |
-
iimg = gr.Image(
|
289 |
-
type="pil",
|
290 |
-
label="Upload Image"
|
291 |
-
)
|
292 |
-
with gr.Group():
|
293 |
-
prompt = gr.Textbox(
|
294 |
-
label="๐ฏ Object to Extract",
|
295 |
-
placeholder="Enter what you want to extract..."
|
296 |
-
)
|
297 |
-
bg_prompt = gr.Textbox(
|
298 |
-
label="๐ผ๏ธ Background Generation Prompt (optional)",
|
299 |
-
placeholder="Describe the background you want..."
|
300 |
-
)
|
301 |
-
btn = gr.Button(
|
302 |
-
"๐ Process Image",
|
303 |
-
variant="primary",
|
304 |
-
interactive=False
|
305 |
-
)
|
306 |
-
|
307 |
-
with gr.Column(scale=1, min_width=400):
|
308 |
-
gr.HTML("<h3>๐ค Output Section</h3>")
|
309 |
-
oimg = ImageSlider(
|
310 |
-
label="Results Preview",
|
311 |
-
show_download_button=False
|
312 |
-
)
|
313 |
-
dlbt = gr.DownloadButton(
|
314 |
-
"๐พ Download Result",
|
315 |
-
interactive=False
|
316 |
-
)
|
317 |
-
|
318 |
-
with gr.Accordion("๐ Examples", open=False):
|
319 |
-
examples = [
|
320 |
-
["examples/text.jpg", "text"],
|
321 |
-
["examples/potted-plant.jpg", "potted plant"],
|
322 |
-
["examples/chair.jpg", "chair"],
|
323 |
-
["examples/black-lamp.jpg", "black lamp"],
|
324 |
-
]
|
325 |
-
ex = gr.Examples(
|
326 |
-
examples=examples,
|
327 |
-
inputs=[iimg, prompt],
|
328 |
-
outputs=[oimg, dlbt],
|
329 |
-
fn=process_prompt,
|
330 |
-
cache_examples=True
|
331 |
-
)
|
332 |
-
|
333 |
-
with gr.Tab("๐ Extract by Box", id="tab_bb"):
|
334 |
-
with gr.Row(equal_height=True):
|
335 |
-
with gr.Column(scale=1, min_width=400):
|
336 |
-
gr.HTML("<h3>๐ฅ Input Section</h3>")
|
337 |
-
annotator = image_annotator(
|
338 |
-
image_type="pil",
|
339 |
-
disable_edit_boxes=True,
|
340 |
-
show_download_button=False,
|
341 |
-
show_share_button=False,
|
342 |
-
single_box=True,
|
343 |
-
label="Draw Box Around Object"
|
344 |
-
)
|
345 |
-
btn_bb = gr.Button(
|
346 |
-
"โ๏ธ Extract Selection",
|
347 |
-
variant="primary",
|
348 |
-
interactive=False
|
349 |
-
)
|
350 |
-
|
351 |
-
with gr.Column(scale=1, min_width=400):
|
352 |
-
gr.HTML("<h3>๐ค Output Section</h3>")
|
353 |
-
oimg_bb = ImageSlider(
|
354 |
-
label="Results Preview",
|
355 |
-
show_download_button=False
|
356 |
-
)
|
357 |
-
dlbt_bb = gr.DownloadButton(
|
358 |
-
"๐พ Download Result",
|
359 |
-
interactive=False
|
360 |
-
)
|
361 |
-
|
362 |
-
with gr.Accordion("๐ Examples", open=False):
|
363 |
-
examples_bb = [
|
364 |
-
{
|
365 |
-
"image": "examples/text.jpg",
|
366 |
-
"boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}],
|
367 |
-
},
|
368 |
-
{
|
369 |
-
"image": "examples/potted-plant.jpg",
|
370 |
-
"boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}],
|
371 |
-
},
|
372 |
-
{
|
373 |
-
"image": "examples/chair.jpg",
|
374 |
-
"boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}],
|
375 |
-
},
|
376 |
-
{
|
377 |
-
"image": "examples/black-lamp.jpg",
|
378 |
-
"boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}],
|
379 |
-
},
|
380 |
-
]
|
381 |
-
ex_bb = gr.Examples(
|
382 |
-
examples=examples_bb,
|
383 |
-
inputs=[annotator],
|
384 |
-
outputs=[oimg_bb, dlbt_bb],
|
385 |
-
fn=process_bbox,
|
386 |
-
cache_examples=True
|
387 |
-
)
|
388 |
-
|
389 |
-
# Event handlers
|
390 |
-
btn.add(oimg)
|
391 |
-
for inp in [iimg, prompt]:
|
392 |
-
inp.change(
|
393 |
-
fn=on_change_prompt,
|
394 |
-
inputs=[iimg, prompt],
|
395 |
-
outputs=[btn],
|
396 |
-
)
|
397 |
-
btn.click(
|
398 |
-
fn=process_prompt,
|
399 |
-
inputs=[iimg, prompt, bg_prompt], # bg_prompt ์ถ๊ฐ
|
400 |
-
outputs=[oimg, dlbt],
|
401 |
-
api_name=False,
|
402 |
-
)
|
403 |
-
|
404 |
-
btn_bb.add(oimg_bb)
|
405 |
-
annotator.change(
|
406 |
-
fn=on_change_bbox,
|
407 |
-
inputs=[annotator],
|
408 |
-
outputs=[btn_bb],
|
409 |
-
)
|
410 |
-
btn_bb.click(
|
411 |
-
fn=process_bbox,
|
412 |
-
inputs=[annotator],
|
413 |
-
outputs=[oimg_bb, dlbt_bb],
|
414 |
-
api_name=False,
|
415 |
-
)
|
416 |
-
|
417 |
-
# CSS ์คํ์ผ ์ ์
|
418 |
-
css = """
|
419 |
-
footer {display: none}
|
420 |
-
.main-title {
|
421 |
-
text-align: center;
|
422 |
-
margin: 2em 0;
|
423 |
-
}
|
424 |
-
.main-title h1 {
|
425 |
-
color: #2196F3;
|
426 |
-
font-size: 2.5em;
|
427 |
-
}
|
428 |
-
.container {
|
429 |
-
max-width: 1200px;
|
430 |
-
margin: auto;
|
431 |
-
padding: 20px;
|
432 |
-
}
|
433 |
-
"""
|
434 |
-
|
435 |
-
# Launch settings
|
436 |
-
demo.queue(max_size=30, api_open=False)
|
437 |
-
demo.launch(
|
438 |
-
show_api=False,
|
439 |
-
share=False,
|
440 |
-
server_name="0.0.0.0",
|
441 |
-
server_port=7860,
|
442 |
-
show_error=True
|
443 |
-
)
|
444 |
-
|
445 |
-
# Launch settings
|
446 |
-
demo.queue(max_size=30, api_open=False)
|
447 |
-
demo.launch(
|
448 |
-
show_api=False,
|
449 |
-
share=False,
|
450 |
-
server_name="0.0.0.0",
|
451 |
-
server_port=7860,
|
452 |
-
show_error=True
|
453 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|