ginipick commited on
Commit
85be59e
โ€ข
1 Parent(s): be5cac6

Delete src/app.py

Browse files
Files changed (1) hide show
  1. src/app.py +0 -453
src/app.py DELETED
@@ -1,453 +0,0 @@
1
- import tempfile
2
- import time
3
- from collections.abc import Sequence
4
- from typing import Any, cast
5
-
6
- import gradio as gr
7
- import numpy as np
8
- import pillow_heif
9
- import spaces
10
- import torch
11
- from gradio_image_annotation import image_annotator
12
- from gradio_imageslider import ImageSlider
13
- from PIL import Image
14
- from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
15
- from refiners.fluxion.utils import no_grad
16
- from refiners.solutions import BoxSegmenter
17
- from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor
18
-
19
- import spaces
20
- import argparse
21
- import os
22
- from os import path
23
- import shutil
24
- from datetime import datetime
25
- from safetensors.torch import load_file
26
- from huggingface_hub import hf_hub_download
27
- import gradio as gr
28
- from diffusers import FluxPipeline
29
- from PIL import Image
30
- from huggingface_hub import login
31
-
32
- # HF ํ† ํฐ ์ธ์ฆ ์ฒ˜๋ฆฌ
33
- HF_TOKEN = os.getenv("HF_TOKEN")
34
- if HF_TOKEN is None:
35
- raise ValueError("Please set the HF_TOKEN environment variable")
36
-
37
- try:
38
- login(token=HF_TOKEN)
39
- except Exception as e:
40
- raise ValueError(f"Failed to login to Hugging Face: {str(e)}")
41
-
42
- # FLUX ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™” ์ˆ˜์ •
43
- def initialize_pipeline():
44
- try:
45
- pipe = FluxPipeline.from_pretrained(
46
- "black-forest-labs/FLUX.1-dev",
47
- torch_dtype=torch.bfloat16,
48
- use_auth_token=HF_TOKEN
49
- )
50
- pipe.load_lora_weights(
51
- hf_hub_download(
52
- "ByteDance/Hyper-SD",
53
- "Hyper-FLUX.1-dev-8steps-lora.safetensors",
54
- use_auth_token=HF_TOKEN
55
- )
56
- )
57
- pipe.fuse_lora(lora_scale=0.125)
58
- pipe.to(device="cuda", dtype=torch.bfloat16)
59
- return pipe
60
- except Exception as e:
61
- raise ValueError(f"Failed to initialize pipeline: {str(e)}")
62
- # ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™”
63
- try:
64
- pipe = initialize_pipeline()
65
- except Exception as e:
66
- raise RuntimeError(f"Failed to setup the model: {str(e)}")
67
-
68
- BoundingBox = tuple[int, int, int, int]
69
-
70
- pillow_heif.register_heif_opener()
71
- pillow_heif.register_avif_opener()
72
-
73
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
74
-
75
- # weird dance because ZeroGPU
76
- segmenter = BoxSegmenter(device="cpu")
77
- segmenter.device = device
78
- segmenter.model = segmenter.model.to(device=segmenter.device)
79
-
80
- gd_model_path = "IDEA-Research/grounding-dino-base"
81
- gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
82
- gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
83
- gd_model = gd_model.to(device=device) # type: ignore
84
- assert isinstance(gd_model, GroundingDinoForObjectDetection)
85
-
86
- # FLUX ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™” ์ฝ”๋“œ ์ถ”๊ฐ€
87
- pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
88
- pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"))
89
- pipe.fuse_lora(lora_scale=0.125)
90
- pipe.to(device="cuda", dtype=torch.bfloat16)
91
-
92
- def generate_background(prompt: str, width: int, height: int) -> Image.Image:
93
- """๋ฐฐ๊ฒฝ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ํ•จ์ˆ˜"""
94
- try:
95
- with timer("Background generation"):
96
- image = pipe(
97
- prompt=prompt,
98
- width=width,
99
- height=height,
100
- num_inference_steps=8,
101
- guidance_scale=4.0,
102
- ).images[0]
103
- return image
104
- except Exception as e:
105
- raise gr.Error(f"Background generation failed: {str(e)}") # ๊ด„ํ˜ธ ๋‹ซ๊ธฐ ์ˆ˜์ •
106
-
107
-
108
- def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image:
109
- """์ „๊ฒฝ๊ณผ ๋ฐฐ๊ฒฝ ํ•ฉ์„ฑ ํ•จ์ˆ˜"""
110
- background = background.resize(foreground.size)
111
- return Image.alpha_composite(background.convert('RGBA'), foreground)
112
-
113
- def _process(
114
- img: Image.Image,
115
- prompt: str | BoundingBox | None,
116
- bg_prompt: str | None,
117
- ) -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]:
118
- try:
119
- # ๊ธฐ์กด ๊ฐ์ฒด ์ถ”์ถœ ๋กœ์ง
120
- mask, bbox, time_log = _gpu_process(img, prompt)
121
- masked_alpha = apply_mask(img, mask, defringe=True)
122
-
123
- # ๋ฐฐ๊ฒฝ ์ƒ์„ฑ ๋ฐ ํ•ฉ์„ฑ
124
- if bg_prompt:
125
- background = generate_background(bg_prompt, img.width, img.height)
126
- combined = combine_with_background(masked_alpha, background)
127
- else:
128
- combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)
129
-
130
- # ์ €์žฅ ๋กœ์ง
131
- thresholded = mask.point(lambda p: 255 if p > 10 else 0)
132
- bbox = thresholded.getbbox()
133
- to_dl = masked_alpha.crop(bbox)
134
-
135
- temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
136
- to_dl.save(temp, format="PNG")
137
- temp.close()
138
-
139
- return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True)
140
- except Exception as e:
141
- raise gr.Error(f"Processing failed: {str(e)}")
142
-
143
- def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
144
- if not bboxes:
145
- return None
146
- for bbox in bboxes:
147
- assert len(bbox) == 4
148
- assert all(isinstance(x, int) for x in bbox)
149
- return (
150
- min(bbox[0] for bbox in bboxes),
151
- min(bbox[1] for bbox in bboxes),
152
- max(bbox[2] for bbox in bboxes),
153
- max(bbox[3] for bbox in bboxes),
154
- )
155
-
156
-
157
- def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
158
- x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
159
- return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)
160
-
161
-
162
- def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
163
- assert isinstance(gd_processor, GroundingDinoProcessor)
164
-
165
- # Grounding Dino expects a dot after each category.
166
- inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)
167
-
168
- with no_grad():
169
- outputs = gd_model(**inputs)
170
- width, height = img.size
171
- results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
172
- outputs,
173
- inputs["input_ids"],
174
- target_sizes=[(height, width)],
175
- )[0]
176
- assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)
177
-
178
- bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
179
- return bbox_union(bboxes.numpy().tolist())
180
-
181
-
182
- def apply_mask(
183
- img: Image.Image,
184
- mask_img: Image.Image,
185
- defringe: bool = True,
186
- ) -> Image.Image:
187
- assert img.size == mask_img.size
188
- img = img.convert("RGB")
189
- mask_img = mask_img.convert("L")
190
-
191
- if defringe:
192
- # Mitigate edge halo effects via color decontamination
193
- rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
194
- foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
195
- img = Image.fromarray((foreground * 255).astype("uint8"))
196
-
197
- result = Image.new("RGBA", img.size)
198
- result.paste(img, (0, 0), mask_img)
199
- return result
200
-
201
-
202
- @spaces.GPU
203
- def _gpu_process(
204
- img: Image.Image,
205
- prompt: str | BoundingBox | None,
206
- ) -> tuple[Image.Image, BoundingBox | None, list[str]]:
207
- # Because of ZeroGPU shenanigans, we need a *single* function with the
208
- # `spaces.GPU` decorator that *does not* contain postprocessing.
209
-
210
- time_log: list[str] = []
211
-
212
- if isinstance(prompt, str):
213
- t0 = time.time()
214
- bbox = gd_detect(img, prompt)
215
- time_log.append(f"detect: {time.time() - t0}")
216
- if not bbox:
217
- print(time_log[0])
218
- raise gr.Error("No object detected")
219
- else:
220
- bbox = prompt
221
-
222
- t0 = time.time()
223
- mask = segmenter(img, bbox)
224
- time_log.append(f"segment: {time.time() - t0}")
225
-
226
- return mask, bbox, time_log
227
-
228
-
229
-
230
-
231
-
232
- def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
233
- assert isinstance(img := prompts["image"], Image.Image)
234
- assert isinstance(boxes := prompts["boxes"], list)
235
- if len(boxes) == 1:
236
- assert isinstance(box := boxes[0], dict)
237
- bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"])
238
- else:
239
- assert len(boxes) == 0
240
- bbox = None
241
- return _process(img, bbox)
242
-
243
-
244
- def on_change_bbox(prompts: dict[str, Any] | None):
245
- return gr.update(interactive=prompts is not None)
246
-
247
-
248
- def process_prompt(img: Image.Image, prompt: str) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
249
- return _process(img, prompt)
250
-
251
-
252
- def on_change_prompt(img: Image.Image | None, prompt: str | None):
253
- return gr.update(interactive=bool(img and prompt))
254
-
255
-
256
- css = """
257
- footer {
258
- visibility: hidden;
259
- }
260
- """
261
-
262
- # ์Šคํƒ€์ผ ์ •์˜ ์ถ”๊ฐ€
263
- css = """
264
- footer {visibility: hidden}
265
- .container {max-width: 1200px; margin: auto; padding: 20px;}
266
- .main-title {text-align: center; color: #2a2a2a; margin-bottom: 2em;}
267
- .tabs {background: #f7f7f7; border-radius: 15px; padding: 20px;}
268
- .input-column {background: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 6px rgba(0,0,0,0.1);}
269
- .output-column {background: white; padding: 20px; border-radius: 10px; box-shadow: 0 2px 6px rgba(0,0,0,0.1);}
270
- .custom-button {background: #2196F3; color: white; border: none; border-radius: 5px; padding: 10px 20px;}
271
- .custom-button:hover {background: #1976D2;}
272
- .example-region {margin-top: 2em; padding: 20px; background: #f0f0f0; border-radius: 10px;}
273
- """
274
-
275
- with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
276
- gr.HTML("""
277
- <div class="main-title">
278
- <h1>๐ŸŽจ Advanced Image Object Extractor</h1>
279
- <p>Extract objects from images using text prompts or bounding boxes</p>
280
- </div>
281
- """)
282
-
283
- with gr.Tabs() as tabs:
284
- with gr.Tab("โœจ Extract by Text", id="tab_prompt"):
285
- with gr.Row(equal_height=True):
286
- with gr.Column(scale=1, min_width=400):
287
- gr.HTML("<h3>๐Ÿ“ฅ Input Section</h3>")
288
- iimg = gr.Image(
289
- type="pil",
290
- label="Upload Image"
291
- )
292
- with gr.Group():
293
- prompt = gr.Textbox(
294
- label="๐ŸŽฏ Object to Extract",
295
- placeholder="Enter what you want to extract..."
296
- )
297
- bg_prompt = gr.Textbox(
298
- label="๐Ÿ–ผ๏ธ Background Generation Prompt (optional)",
299
- placeholder="Describe the background you want..."
300
- )
301
- btn = gr.Button(
302
- "๐Ÿš€ Process Image",
303
- variant="primary",
304
- interactive=False
305
- )
306
-
307
- with gr.Column(scale=1, min_width=400):
308
- gr.HTML("<h3>๐Ÿ“ค Output Section</h3>")
309
- oimg = ImageSlider(
310
- label="Results Preview",
311
- show_download_button=False
312
- )
313
- dlbt = gr.DownloadButton(
314
- "๐Ÿ’พ Download Result",
315
- interactive=False
316
- )
317
-
318
- with gr.Accordion("๐Ÿ“š Examples", open=False):
319
- examples = [
320
- ["examples/text.jpg", "text"],
321
- ["examples/potted-plant.jpg", "potted plant"],
322
- ["examples/chair.jpg", "chair"],
323
- ["examples/black-lamp.jpg", "black lamp"],
324
- ]
325
- ex = gr.Examples(
326
- examples=examples,
327
- inputs=[iimg, prompt],
328
- outputs=[oimg, dlbt],
329
- fn=process_prompt,
330
- cache_examples=True
331
- )
332
-
333
- with gr.Tab("๐Ÿ“ Extract by Box", id="tab_bb"):
334
- with gr.Row(equal_height=True):
335
- with gr.Column(scale=1, min_width=400):
336
- gr.HTML("<h3>๐Ÿ“ฅ Input Section</h3>")
337
- annotator = image_annotator(
338
- image_type="pil",
339
- disable_edit_boxes=True,
340
- show_download_button=False,
341
- show_share_button=False,
342
- single_box=True,
343
- label="Draw Box Around Object"
344
- )
345
- btn_bb = gr.Button(
346
- "โœ‚๏ธ Extract Selection",
347
- variant="primary",
348
- interactive=False
349
- )
350
-
351
- with gr.Column(scale=1, min_width=400):
352
- gr.HTML("<h3>๐Ÿ“ค Output Section</h3>")
353
- oimg_bb = ImageSlider(
354
- label="Results Preview",
355
- show_download_button=False
356
- )
357
- dlbt_bb = gr.DownloadButton(
358
- "๐Ÿ’พ Download Result",
359
- interactive=False
360
- )
361
-
362
- with gr.Accordion("๐Ÿ“š Examples", open=False):
363
- examples_bb = [
364
- {
365
- "image": "examples/text.jpg",
366
- "boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}],
367
- },
368
- {
369
- "image": "examples/potted-plant.jpg",
370
- "boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}],
371
- },
372
- {
373
- "image": "examples/chair.jpg",
374
- "boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}],
375
- },
376
- {
377
- "image": "examples/black-lamp.jpg",
378
- "boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}],
379
- },
380
- ]
381
- ex_bb = gr.Examples(
382
- examples=examples_bb,
383
- inputs=[annotator],
384
- outputs=[oimg_bb, dlbt_bb],
385
- fn=process_bbox,
386
- cache_examples=True
387
- )
388
-
389
- # Event handlers
390
- btn.add(oimg)
391
- for inp in [iimg, prompt]:
392
- inp.change(
393
- fn=on_change_prompt,
394
- inputs=[iimg, prompt],
395
- outputs=[btn],
396
- )
397
- btn.click(
398
- fn=process_prompt,
399
- inputs=[iimg, prompt, bg_prompt], # bg_prompt ์ถ”๊ฐ€
400
- outputs=[oimg, dlbt],
401
- api_name=False,
402
- )
403
-
404
- btn_bb.add(oimg_bb)
405
- annotator.change(
406
- fn=on_change_bbox,
407
- inputs=[annotator],
408
- outputs=[btn_bb],
409
- )
410
- btn_bb.click(
411
- fn=process_bbox,
412
- inputs=[annotator],
413
- outputs=[oimg_bb, dlbt_bb],
414
- api_name=False,
415
- )
416
-
417
- # CSS ์Šคํƒ€์ผ ์ •์˜
418
- css = """
419
- footer {display: none}
420
- .main-title {
421
- text-align: center;
422
- margin: 2em 0;
423
- }
424
- .main-title h1 {
425
- color: #2196F3;
426
- font-size: 2.5em;
427
- }
428
- .container {
429
- max-width: 1200px;
430
- margin: auto;
431
- padding: 20px;
432
- }
433
- """
434
-
435
- # Launch settings
436
- demo.queue(max_size=30, api_open=False)
437
- demo.launch(
438
- show_api=False,
439
- share=False,
440
- server_name="0.0.0.0",
441
- server_port=7860,
442
- show_error=True
443
- )
444
-
445
- # Launch settings
446
- demo.queue(max_size=30, api_open=False)
447
- demo.launch(
448
- show_api=False,
449
- share=False,
450
- server_name="0.0.0.0",
451
- server_port=7860,
452
- show_error=True
453
- )