import tempfile import time from collections.abc import Sequence from typing import Any, cast import os from huggingface_hub import login import gradio as gr import numpy as np import pillow_heif import spaces import torch from gradio_image_annotation import image_annotator from gradio_imageslider import ImageSlider from PIL import Image from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml from refiners.fluxion.utils import no_grad from refiners.solutions import BoxSegmenter from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor from diffusers import FluxPipeline BoundingBox = tuple[int, int, int, int] # 초기화 및 설정 pillow_heif.register_heif_opener() pillow_heif.register_avif_opener() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # HF 토큰 설정 HF_TOKEN = os.getenv("HF_TOKEN") if HF_TOKEN is None: raise ValueError("Please set the HF_TOKEN environment variable") try: login(token=HF_TOKEN) except Exception as e: raise ValueError(f"Failed to login to Hugging Face: {str(e)}") # 모델 초기화 segmenter = BoxSegmenter(device="cpu") segmenter.device = device segmenter.model = segmenter.model.to(device=segmenter.device) gd_model_path = "IDEA-Research/grounding-dino-base" gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path) gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32) gd_model = gd_model.to(device=device) assert isinstance(gd_model, GroundingDinoForObjectDetection) # FLUX 파이프라인 초기화 pipe = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, use_auth_token=HF_TOKEN ) pipe.load_lora_weights( hf_hub_download( "ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors", use_auth_token=HF_TOKEN ) ) pipe.fuse_lora(lora_scale=0.125) pipe.to(device="cuda", dtype=torch.bfloat16) def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None: if not bboxes: return None for bbox in bboxes: assert len(bbox) == 4 assert all(isinstance(x, int) for x in bbox) return ( min(bbox[0] for bbox in bboxes), min(bbox[1] for bbox in bboxes), max(bbox[2] for bbox in bboxes), max(bbox[3] for bbox in bboxes), ) def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor: x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1) return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1) def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None: inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device) with no_grad(): outputs = gd_model(**inputs) width, height = img.size results: dict[str, Any] = gd_processor.post_process_grounded_object_detection( outputs, inputs["input_ids"], target_sizes=[(height, width)], )[0] assert "boxes" in results and isinstance(results["boxes"], torch.Tensor) bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height) return bbox_union(bboxes.numpy().tolist()) def apply_mask(img: Image.Image, mask_img: Image.Image, defringe: bool = True) -> Image.Image: assert img.size == mask_img.size img = img.convert("RGB") mask_img = mask_img.convert("L") if defringe: rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0 foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha)) img = Image.fromarray((foreground * 255).astype("uint8")) result = Image.new("RGBA", img.size) result.paste(img, (0, 0), mask_img) return result def generate_background(prompt: str, width: int, height: int) -> Image.Image: """배경 이미지 생성 함수""" try: with timer("Background generation"): image = pipe( prompt=prompt, width=width, height=height, num_inference_steps=8, guidance_scale=4.0, ).images[0] return image except Exception as e: raise gr.Error(f"Background generation failed: {str(e)}") def combine_with_background(foreground: Image.Image, background: Image.Image) -> Image.Image: """전경과 배경 합성 함수""" background = background.resize(foreground.size) return Image.alpha_composite(background.convert('RGBA'), foreground) @spaces.GPU def _gpu_process(img: Image.Image, prompt: str | BoundingBox | None) -> tuple[Image.Image, BoundingBox | None, list[str]]: time_log: list[str] = [] if isinstance(prompt, str): t0 = time.time() bbox = gd_detect(img, prompt) time_log.append(f"detect: {time.time() - t0}") if not bbox: print(time_log[0]) raise gr.Error("No object detected") else: bbox = prompt t0 = time.time() mask = segmenter(img, bbox) time_log.append(f"segment: {time.time() - t0}") return mask, bbox, time_log def _process(img: Image.Image, prompt: str | BoundingBox | None, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image, Image.Image], gr.DownloadButton]: if img.width > 2048 or img.height > 2048: orig_res = max(img.width, img.height) img.thumbnail((2048, 2048)) if isinstance(prompt, tuple): x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt) prompt = (x0, y0, x1, y1) mask, bbox, time_log = _gpu_process(img, prompt) masked_alpha = apply_mask(img, mask, defringe=True) if bg_prompt: try: background = generate_background(bg_prompt, img.width, img.height) combined = combine_with_background(masked_alpha, background) except Exception as e: raise gr.Error(f"Background processing failed: {str(e)}") else: combined = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha) thresholded = mask.point(lambda p: 255 if p > 10 else 0) bbox = thresholded.getbbox() to_dl = masked_alpha.crop(bbox) temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png") to_dl.save(temp, format="PNG") temp.close() return (img, combined, masked_alpha), gr.DownloadButton(value=temp.name, interactive=True) def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: assert isinstance(img := prompts["image"], Image.Image) assert isinstance(boxes := prompts["boxes"], list) if len(boxes) == 1: assert isinstance(box := boxes[0], dict) bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"]) else: assert len(boxes) == 0 bbox = None return _process(img, bbox) def on_change_bbox(prompts: dict[str, Any] | None): return gr.update(interactive=prompts is not None) def process_prompt(img: Image.Image, prompt: str, bg_prompt: str | None = None) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]: return _process(img, prompt, bg_prompt) def on_change_prompt(img: Image.Image | None, prompt: str | None, bg_prompt: str | None = None): return gr.update(interactive=bool(img and prompt)) # CSS 스타일 정의 css = """ footer {display: none} .main-title { text-align: center; margin: 2em 0; } .main-title h1 { color: #2196F3; font-size: 2.5em; } .container { max-width: 1200px; margin: auto; padding: 20px; } """ # Gradio UI with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: gr.HTML("""

🎨 Advanced Image Object Extractor

Extract objects from images using text prompts or bounding boxes

""") with gr.Tabs() as tabs: with gr.Tab("✨ Extract by Text", id="tab_prompt"): with gr.Row(equal_height=True): with gr.Column(scale=1, min_width=400): gr.HTML("

📥 Input Section

") iimg = gr.Image( type="pil", label="Upload Image" ) with gr.Group(): prompt = gr.Textbox( label="🎯 Object to Extract", placeholder="Enter what you want to extract..." ) bg_prompt = gr.Textbox( label="🖼️ Background Generation Prompt (optional)", placeholder="Describe the background you want..." ) btn = gr.Button( "🚀 Process Image", variant="primary", interactive=False ) with gr.Column(scale=1, min_width=400): gr.HTML("

📤 Output Section

") oimg = ImageSlider( label="Results Preview", show_download_button=False ) dlbt = gr.DownloadButton( "💾 Download Result", interactive=False ) with gr.Accordion("📚 Examples", open=False): examples = [ ["examples/text.jpg", "text", "white background"], ["examples/black-lamp.jpg", "black lamp", "minimalist interior"] ] ex = gr.Examples( examples=examples, inputs=[iimg, prompt, bg_prompt], outputs=[oimg, dlbt], fn=process_prompt, cache_examples=True ) with gr.Tab("📏 Extract by Box", id="tab_bb"): with gr.Row(equal_height=True): with gr.Column(scale=1, min_width=400): gr.HTML("

📥 Input Section

") annotator = image_annotator( image_type="pil", disable_edit_boxes=True, show_download_button=False, show_share_button=False, single_box=True, label="Draw Box Around Object" ) btn_bb = gr.Button( "✂️ Extract Selection", variant="primary", interactive=False ) with gr.Column(scale=1, min_width=400): gr.HTML("

📤 Output Section

") oimg_bb = ImageSlider( label="Results Preview", show_download_button=False ) dlbt_bb = gr.DownloadButton( "💾 Download Result", interactive=False ) with gr.Accordion("📚 Examples", open=False): examples_bb = [ ["examples/text.jpg", [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}]], ["examples/black-lamp.jpg", [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}]] ] ex_bb = gr.Examples( examples=examples_bb, inputs=[annotator], outputs=[oimg_bb, dlbt_bb], fn=process_bbox, cache_examples=True ) # Event handlers btn.add(oimg) for inp in [iimg, prompt]: inp.change( fn=on_change_prompt, inputs=[iimg, prompt, bg_prompt], outputs=[btn], ) btn.click( fn=process_prompt, inputs=[iimg, prompt, bg_prompt], outputs=[oimg, dlbt], api_name=False, ) btn_bb.add(oimg_bb) annotator.change( fn=on_change_bbox, inputs=[annotator], outputs=[btn_bb], ) btn_bb.click( fn=process_bbox, inputs=[annotator], outputs=[oimg_bb, dlbt_bb], api_name=False, ) demo.queue(max_size=30, api_open=False) demo.launch( show_api=False, share=False, server_name="0.0.0.0", server_port=7860, show_error=True )