Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,277 Bytes
94bf1e0 d289335 94bf1e0 fcc0582 55d59a6 fcc0582 f749fc6 fcc0582 d289335 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 8867999 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 94bf1e0 fcc0582 35e452a fcc0582 f749fc6 fcc0582 c99c335 fcc0582 94bf1e0 fcc0582 94bf1e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import spaces
import gradio as gr
from phi3_instruct_graph import MODEL_LIST, Phi3InstructGraph
import rapidjson
from pyvis.network import Network
import networkx as nx
import spacy
from spacy import displacy
from spacy.tokens import Span
import random
from tqdm import tqdm
# Constants
TITLE = "π GraphMind: Phi-3 Instruct Graph Explorer"
SUBTITLE = "β¨ Extract and visualize knowledge graphs from any text in multiple languages"
# Custom CSS for styling
CUSTOM_CSS = """
.gradio-container {
font-family: 'Inter', 'Segoe UI', Roboto, sans-serif;
}
.gr-button-primary {
background-color: #6366f1 !important;
}
.gr-button-secondary {
border-color: #6366f1 !important;
color: #6366f1 !important;
}
"""
# Color utilities
def get_random_light_color():
r = random.randint(140, 255)
g = random.randint(140, 255)
b = random.randint(140, 255)
return f"#{r:02x}{g:02x}{b:02x}"
# Text preprocessing
def handle_text(text):
return " ".join(text.split())
# Main processing functions
@spaces.GPU
def extract(text, model):
try:
model = Phi3InstructGraph(model=model)
result = model.extract(text)
return rapidjson.loads(result)
except Exception as e:
raise gr.Error(f"Extraction error: {str(e)}")
def find_token_indices(doc, substring, text):
result = []
start_index = text.find(substring)
while start_index != -1:
end_index = start_index + len(substring)
start_token = None
end_token = None
for token in doc:
if token.idx == start_index:
start_token = token.i
if token.idx + len(token) == end_index:
end_token = token.i + 1
if start_token is not None and end_token is not None:
result.append({
"start": start_token,
"end": end_token
})
# Search for next occurrence
start_index = text.find(substring, end_index)
return result
def create_custom_entity_viz(data, full_text):
nlp = spacy.blank("xx")
doc = nlp(full_text)
spans = []
colors = {}
for node in data["nodes"]:
entity_spans = find_token_indices(doc, node["id"], full_text)
for dataentity in entity_spans:
start = dataentity["start"]
end = dataentity["end"]
if start < len(doc) and end <= len(doc):
# Check for overlapping spans
overlapping = any(s.start < end and start < s.end for s in spans)
if not overlapping:
span = Span(doc, start, end, label=node["type"])
spans.append(span)
if node["type"] not in colors:
colors[node["type"]] = get_random_light_color()
doc.set_ents(spans, default="unmodified")
doc.spans["sc"] = spans
options = {
"colors": colors,
"ents": list(colors.keys()),
"style": "ent",
"manual": True
}
html = displacy.render(doc, style="span", options=options)
return html
def create_graph(json_data):
G = nx.Graph()
# Add nodes with tooltips
for node in json_data['nodes']:
G.add_node(node['id'], title=f"{node['type']}: {node['detailed_type']}")
# Add edges with labels
for edge in json_data['edges']:
G.add_edge(edge['from'], edge['to'], title=edge['label'], label=edge['label'])
# Create network visualization
nt = Network(
width="720px",
height="600px",
directed=True,
notebook=False,
bgcolor="#f8fafc",
font_color="#1e293b"
)
# Configure network display
nt.from_nx(G)
nt.barnes_hut(
gravity=-3000,
central_gravity=0.3,
spring_length=50,
spring_strength=0.001,
damping=0.09,
overlap=0,
)
# Customize edge appearance
for edge in nt.edges:
edge['width'] = 2
edge['arrows'] = {'to': {'enabled': True, 'type': 'arrow'}}
edge['color'] = {'color': '#6366f1', 'highlight': '#4f46e5'}
edge['font'] = {'size': 12, 'color': '#4b5563', 'face': 'Arial'}
# Customize node appearance
for node in nt.nodes:
node['color'] = {'background': '#e0e7ff', 'border': '#6366f1', 'highlight': {'background': '#c7d2fe', 'border': '#4f46e5'}}
node['font'] = {'size': 14, 'color': '#1e293b'}
node['shape'] = 'dot'
node['size'] = 25
# Generate HTML with iframe to isolate styles
html = nt.generate_html()
html = html.replace("'", '"')
return f"""<iframe style="width: 100%; height: 620px; margin: 0 auto; border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);"
name="result" allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;"
sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""
def process_and_visualize(text, model, progress=gr.Progress()):
if not text or not model:
raise gr.Error("β οΈ Both text and model must be provided.")
progress(0, desc="Starting extraction...")
json_data = extract(text, model)
progress(0.5, desc="Creating entity visualization...")
entities_viz = create_custom_entity_viz(json_data, text)
progress(0.8, desc="Building knowledge graph...")
graph_html = create_graph(json_data)
node_count = len(json_data["nodes"])
edge_count = len(json_data["edges"])
stats = f"π Extracted {node_count} entities and {edge_count} relationships"
progress(1.0, desc="Complete!")
return graph_html, entities_viz, json_data, stats
# Example texts in different languages
EXAMPLES = [
[handle_text("""Legendary rock band Aerosmith has officially announced their retirement from touring after 54 years, citing
lead singer Steven Tyler's unrecoverable vocal cord injury.
The decision comes after months of unsuccessful treatment for Tyler's fractured larynx,
which he suffered in September 2023.""")],
[handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual
court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI)
in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe,
pleaded not guilty to the charges.""")],
[handle_text("""μΈκ³μ μΈ κΈ°μ κΈ°μ
μΌμ±μ μλ μλ‘μ΄ μΈκ³΅μ§λ₯ κΈ°λ° μ€λ§νΈν°μ μ¬ν΄ νλ°κΈ°μ μΆμν μμ μ΄λΌκ³ λ°ννλ€.
μ΄ μ€λ§νΈν°μ νμ¬ κ°λ° μ€μΈ κ°€λμ μ리μ¦μ μ΅μ μμΌλ‘, κ°λ ₯ν AI κΈ°λ₯κ³Ό νμ μ μΈ μΉ΄λ©λΌ μμ€ν
μ νμ¬ν κ²μΌλ‘ μλ €μ‘λ€.
μΌμ±μ μμ CEOλ μ΄λ² μ μ νμ΄ μ€λ§νΈν° μμ₯μ μλ‘μ΄ νμ μ κ°μ Έμ¬ κ²μ΄λΌκ³ μ λ§νλ€.""")],
[handle_text("""νκ΅ μν 'κΈ°μμΆ©'μ 2020λ
μμΉ΄λ°λ―Έ μμμμμ μνμ, κ°λ
μ, κ°λ³Έμ, κ΅μ μνμ λ± 4κ° λΆλ¬Έμ μμνλ©° μμ¬λ₯Ό μλ‘ μΌλ€.
λ΄μ€νΈ κ°λ
μ΄ μ°μΆν μ΄ μνλ νκ΅ μν μ΅μ΄λ‘ μΉΈ μνμ ν©κΈμ’
λ €μλ μμνμΌλ©°, μ μΈκ³μ μΌλ‘ μμ²λ ν₯νκ³Ό
νλ¨μ νΈνμ λ°μλ€.""")]
]
def create_ui():
with gr.Blocks(css=CUSTOM_CSS, title=TITLE) as demo:
# Header
gr.Markdown(f"# {TITLE}")
gr.Markdown(f"{SUBTITLE}")
with gr.Row():
gr.Markdown("π **Multilingual Support Available** π€")
# Main interface
with gr.Row():
# Input column
with gr.Column(scale=1):
input_model = gr.Dropdown(
MODEL_LIST,
label="π€ Select Model",
info="Choose a model to process your text",
value=MODEL_LIST[0] if MODEL_LIST else None
)
input_text = gr.TextArea(
label="π Input Text",
info="Enter text in any language to extract a knowledge graph",
placeholder="Enter text here...",
lines=10
)
with gr.Row():
submit_button = gr.Button("π Extract & Visualize", variant="primary", scale=2)
clear_button = gr.Button("π Clear", variant="secondary", scale=1)
gr.Examples(
examples=EXAMPLES,
inputs=input_text,
label="π Example Texts (English & Korean)"
)
stats_output = gr.Markdown("", label="π Analysis Results")
# Output column
with gr.Column(scale=1):
with gr.Tab("𧩠Knowledge Graph"):
output_graph = gr.HTML(label="")
with gr.Tab("π·οΈ Entities"):
output_entity_viz = gr.HTML(label="")
with gr.Tab("π JSON Data"):
output_json = gr.JSON(label="")
# Functionality
submit_button.click(
fn=process_and_visualize,
inputs=[input_text, input_model],
outputs=[output_graph, output_entity_viz, output_json, stats_output]
)
clear_button.click(
fn=lambda: [None, None, None, ""],
inputs=[],
outputs=[output_graph, output_entity_viz, output_json, stats_output]
)
# Footer
gr.Markdown("---")
gr.Markdown("π **Instructions:** Enter text in any language, select a model, and click 'Extract & Visualize' to generate a knowledge graph.")
gr.Markdown("π οΈ Powered by Phi-3 Instruct Graph | Emergent Methods")
return demo
demo = create_ui()
demo.launch(share=False) |