File size: 10,277 Bytes
94bf1e0
d289335
94bf1e0
 
 
 
 
 
 
 
fcc0582
 
 
55d59a6
fcc0582
f749fc6
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc0582
 
 
 
 
 
 
d289335
fcc0582
94bf1e0
 
 
fcc0582
 
 
 
 
 
 
 
 
94bf1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc0582
94bf1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8867999
 
 
 
 
 
 
94bf1e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc0582
94bf1e0
 
 
fcc0582
94bf1e0
 
 
fcc0582
94bf1e0
 
 
 
 
fcc0582
 
94bf1e0
fcc0582
 
94bf1e0
 
 
 
 
 
 
 
 
fcc0582
94bf1e0
fcc0582
 
 
 
 
 
 
 
 
 
 
 
 
 
94bf1e0
 
 
fcc0582
 
94bf1e0
 
 
 
fcc0582
94bf1e0
fcc0582
 
 
94bf1e0
fcc0582
 
94bf1e0
 
fcc0582
94bf1e0
 
fcc0582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35e452a
fcc0582
 
 
 
 
 
 
 
 
 
f749fc6
fcc0582
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c99c335
fcc0582
 
94bf1e0
fcc0582
94bf1e0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import spaces
import gradio as gr
from phi3_instruct_graph import MODEL_LIST, Phi3InstructGraph
import rapidjson
from pyvis.network import Network
import networkx as nx
import spacy
from spacy import displacy
from spacy.tokens import Span
import random
from tqdm import tqdm

# Constants
TITLE = "🌐 GraphMind: Phi-3 Instruct Graph Explorer"
SUBTITLE = "✨ Extract and visualize knowledge graphs from any text in multiple languages"

# Custom CSS for styling
CUSTOM_CSS = """
.gradio-container {
    font-family: 'Inter', 'Segoe UI', Roboto, sans-serif;
}
.gr-button-primary {
    background-color: #6366f1 !important;
}
.gr-button-secondary {
    border-color: #6366f1 !important;
    color: #6366f1 !important;
}
"""

# Color utilities
def get_random_light_color():
    r = random.randint(140, 255)
    g = random.randint(140, 255)
    b = random.randint(140, 255)
    return f"#{r:02x}{g:02x}{b:02x}"

# Text preprocessing
def handle_text(text):
    return " ".join(text.split())

# Main processing functions
@spaces.GPU
def extract(text, model):
    try:
        model = Phi3InstructGraph(model=model)    
        result = model.extract(text)
        return rapidjson.loads(result)
    except Exception as e:
        raise gr.Error(f"Extraction error: {str(e)}")

def find_token_indices(doc, substring, text):
    result = []
    start_index = text.find(substring)
    
    while start_index != -1:
        end_index = start_index + len(substring)
        start_token = None
        end_token = None

        for token in doc:
            if token.idx == start_index:
                start_token = token.i
            if token.idx + len(token) == end_index:
                end_token = token.i + 1

        if start_token is not None and end_token is not None:
            result.append({
                "start": start_token,
                "end": end_token
            })
        
        # Search for next occurrence
        start_index = text.find(substring, end_index)

    return result

def create_custom_entity_viz(data, full_text):
    nlp = spacy.blank("xx")
    doc = nlp(full_text)

    spans = []
    colors = {}
    for node in data["nodes"]:
        entity_spans = find_token_indices(doc, node["id"], full_text)
        for dataentity in entity_spans:
            start = dataentity["start"]
            end = dataentity["end"]
            
            if start < len(doc) and end <= len(doc):
                # Check for overlapping spans
                overlapping = any(s.start < end and start < s.end for s in spans)
                if not overlapping:                
                    span = Span(doc, start, end, label=node["type"])
                    spans.append(span)
                    if node["type"] not in colors:
                        colors[node["type"]] = get_random_light_color()

    doc.set_ents(spans, default="unmodified")
    doc.spans["sc"] = spans

    options = {
        "colors": colors,
        "ents": list(colors.keys()),
        "style": "ent",
        "manual": True
    }

    html = displacy.render(doc, style="span", options=options)
    return html

def create_graph(json_data):
    G = nx.Graph()

    # Add nodes with tooltips
    for node in json_data['nodes']:
        G.add_node(node['id'], title=f"{node['type']}: {node['detailed_type']}")

    # Add edges with labels
    for edge in json_data['edges']:
        G.add_edge(edge['from'], edge['to'], title=edge['label'], label=edge['label'])

    # Create network visualization
    nt = Network(
        width="720px",
        height="600px",
        directed=True,
        notebook=False,
        bgcolor="#f8fafc", 
        font_color="#1e293b"
    )
    
    # Configure network display
    nt.from_nx(G)
    nt.barnes_hut(
        gravity=-3000,
        central_gravity=0.3,
        spring_length=50,
        spring_strength=0.001,
        damping=0.09,
        overlap=0,
    )
    
    # Customize edge appearance
    for edge in nt.edges:
        edge['width'] = 2
        edge['arrows'] = {'to': {'enabled': True, 'type': 'arrow'}}
        edge['color'] = {'color': '#6366f1', 'highlight': '#4f46e5'}
        edge['font'] = {'size': 12, 'color': '#4b5563', 'face': 'Arial'}

    # Customize node appearance
    for node in nt.nodes:
        node['color'] = {'background': '#e0e7ff', 'border': '#6366f1', 'highlight': {'background': '#c7d2fe', 'border': '#4f46e5'}}
        node['font'] = {'size': 14, 'color': '#1e293b'}
        node['shape'] = 'dot'
        node['size'] = 25

    # Generate HTML with iframe to isolate styles
    html = nt.generate_html()
    html = html.replace("'", '"')

    return f"""<iframe style="width: 100%; height: 620px; margin: 0 auto; border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);" 
        name="result" allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;" 
        sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups 
        allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
        allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>"""

def process_and_visualize(text, model, progress=gr.Progress()):
    if not text or not model:
        raise gr.Error("⚠️ Both text and model must be provided.")
    
    progress(0, desc="Starting extraction...")
    json_data = extract(text, model)
    
    progress(0.5, desc="Creating entity visualization...")
    entities_viz = create_custom_entity_viz(json_data, text)
    
    progress(0.8, desc="Building knowledge graph...")
    graph_html = create_graph(json_data)
    
    node_count = len(json_data["nodes"])
    edge_count = len(json_data["edges"])
    stats = f"πŸ“Š Extracted {node_count} entities and {edge_count} relationships"
    
    progress(1.0, desc="Complete!")
    return graph_html, entities_viz, json_data, stats

# Example texts in different languages
EXAMPLES = [
    [handle_text("""Legendary rock band Aerosmith has officially announced their retirement from touring after 54 years, citing 
    lead singer Steven Tyler's unrecoverable vocal cord injury. 
    The decision comes after months of unsuccessful treatment for Tyler's fractured larynx, 
    which he suffered in September 2023.""")],
    
    [handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual 
    court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI) 
    in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe, 
    pleaded not guilty to the charges.""")],
    
    [handle_text("""세계적인 기술 κΈ°μ—… μ‚Όμ„±μ „μžλŠ” μƒˆλ‘œμš΄ 인곡지λŠ₯ 기반 μŠ€λ§ˆνŠΈν°μ„ μ˜¬ν•΄ ν•˜λ°˜κΈ°μ— μΆœμ‹œν•  μ˜ˆμ •μ΄λΌκ³  λ°œν‘œν–ˆλ‹€. 
    이 μŠ€λ§ˆνŠΈν°μ€ ν˜„μž¬ 개발 쀑인 κ°€λŸ­μ‹œ μ‹œλ¦¬μ¦ˆμ˜ μ΅œμ‹ μž‘μœΌλ‘œ, κ°•λ ₯ν•œ AI κΈ°λŠ₯κ³Ό ν˜μ‹ μ μΈ 카메라 μ‹œμŠ€ν…œμ„ νƒ‘μž¬ν•  κ²ƒμœΌλ‘œ μ•Œλ €μ‘Œλ‹€. 
    μ‚Όμ„±μ „μžμ˜ CEOλŠ” 이번 μ‹ μ œν’ˆμ΄ 슀마트폰 μ‹œμž₯에 μƒˆλ‘œμš΄ ν˜μ‹ μ„ κ°€μ Έμ˜¬ 것이라고 μ „λ§ν–ˆλ‹€.""")],
    
    [handle_text("""ν•œκ΅­ μ˜ν™” '기생좩'은 2020λ…„ 아카데미 μ‹œμƒμ‹μ—μ„œ μž‘ν’ˆμƒ, 감독상, 각본상, κ΅­μ œμ˜ν™”μƒ λ“± 4개 뢀문을 μˆ˜μƒν•˜λ©° 역사λ₯Ό μƒˆλ‘œ 썼닀. 
    λ΄‰μ€€ν˜Έ 감독이 μ—°μΆœν•œ 이 μ˜ν™”λŠ” ν•œκ΅­ μ˜ν™” 졜초둜 μΉΈ μ˜ν™”μ œ ν™©κΈˆμ’…λ €μƒλ„ μˆ˜μƒν–ˆμœΌλ©°, μ „ μ„Έκ³„μ μœΌλ‘œ μ—„μ²­λ‚œ ν₯ν–‰κ³Ό 
    ν‰λ‹¨μ˜ ν˜Έν‰μ„ λ°›μ•˜λ‹€.""")]
]

def create_ui():
    with gr.Blocks(css=CUSTOM_CSS, title=TITLE) as demo:
        # Header
        gr.Markdown(f"# {TITLE}")
        gr.Markdown(f"{SUBTITLE}")
        
        with gr.Row():
            gr.Markdown("🌍 **Multilingual Support Available** πŸ”€")
            
        # Main interface
        with gr.Row():
            # Input column
            with gr.Column(scale=1):
                input_model = gr.Dropdown(
                    MODEL_LIST, 
                    label="πŸ€– Select Model",
                    info="Choose a model to process your text",
                    value=MODEL_LIST[0] if MODEL_LIST else None
                )
                
                input_text = gr.TextArea(
                    label="πŸ“ Input Text", 
                    info="Enter text in any language to extract a knowledge graph",
                    placeholder="Enter text here...",
                    lines=10
                )
                
                with gr.Row():
                    submit_button = gr.Button("πŸš€ Extract & Visualize", variant="primary", scale=2)
                    clear_button = gr.Button("πŸ”„ Clear", variant="secondary", scale=1)
                
                gr.Examples(
                    examples=EXAMPLES,
                    inputs=input_text,
                    label="πŸ“š Example Texts (English & Korean)"
                )
                
                stats_output = gr.Markdown("", label="πŸ” Analysis Results")
                
            # Output column
            with gr.Column(scale=1):
                with gr.Tab("🧩 Knowledge Graph"):
                    output_graph = gr.HTML(label="")
                
                with gr.Tab("🏷️ Entities"):
                    output_entity_viz = gr.HTML(label="")
                    
                with gr.Tab("πŸ“Š JSON Data"):
                    output_json = gr.JSON(label="")
                    
        # Functionality
        submit_button.click(
            fn=process_and_visualize, 
            inputs=[input_text, input_model],
            outputs=[output_graph, output_entity_viz, output_json, stats_output]
        )
        
        clear_button.click(
            fn=lambda: [None, None, None, ""],
            inputs=[],
            outputs=[output_graph, output_entity_viz, output_json, stats_output]
        )
        
        # Footer
        gr.Markdown("---")
        gr.Markdown("πŸ“‹ **Instructions:** Enter text in any language, select a model, and click 'Extract & Visualize' to generate a knowledge graph.")
        gr.Markdown("πŸ› οΈ Powered by Phi-3 Instruct Graph | Emergent Methods")
        
    return demo

demo = create_ui()
demo.launch(share=False)