import spaces import gradio as gr from phi3_instruct_graph import MODEL_LIST, Phi3InstructGraph import rapidjson from pyvis.network import Network import networkx as nx import spacy from spacy import displacy from spacy.tokens import Span import random import time # Set up the theme and styling CUSTOM_CSS = """ .gradio-container { font-family: 'Inter', 'Segoe UI', Roboto, sans-serif; } .gr-prose h1 { font-size: 2.5rem !important; margin-bottom: 0.5rem !important; background: linear-gradient(90deg, #4338ca, #a855f7); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .gr-prose h2 { font-size: 1.8rem !important; margin-top: 1rem !important; } .info-box { padding: 1rem; border-radius: 0.5rem; background-color: #f3f4f6; margin-bottom: 1rem; border-left: 4px solid #6366f1; } .language-badge { display: inline-block; padding: 0.25rem 0.5rem; border-radius: 9999px; font-size: 0.75rem; font-weight: 600; background-color: #e0e7ff; color: #4338ca; margin-right: 0.5rem; margin-bottom: 0.5rem; } .footer { text-align: center; margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #e2e8f0; font-size: 0.875rem; color: #64748b; } """ # Color utilities def get_random_light_color(): r = random.randint(150, 255) g = random.randint(150, 255) b = random.randint(150, 255) return f"#{r:02x}{g:02x}{b:02x}" # Text processing helper def handle_text(text): return " ".join(text.split()) # Core extraction function @spaces.GPU def extract(text, model): model = Phi3InstructGraph(model=model) try: result = model.extract(text) return rapidjson.loads(result) except Exception as e: raise gr.Error(f"🚨 Extraction failed: {str(e)}") def find_token_indices(doc, substring, text): result = [] start_index = text.find(substring) while start_index != -1: end_index = start_index + len(substring) start_token = None end_token = None for token in doc: if token.idx == start_index: start_token = token.i if token.idx + len(token) == end_index: end_token = token.i + 1 if start_token is not None and end_token is not None: result.append({ "start": start_token, "end": end_token }) # Search for next occurrence start_index = text.find(substring, end_index) return result def create_custom_entity_viz(data, full_text): nlp = spacy.blank("xx") doc = nlp(full_text) spans = [] colors = {} for node in data["nodes"]: entity_spans = find_token_indices(doc, node["id"], full_text) for dataentity in entity_spans: start = dataentity["start"] end = dataentity["end"] if start < len(doc) and end <= len(doc): # Check for overlapping spans overlapping = any(s.start < end and start < s.end for s in spans) if not overlapping: span = Span(doc, start, end, label=node["type"]) spans.append(span) if node["type"] not in colors: colors[node["type"]] = get_random_light_color() doc.set_ents(spans, default="unmodified") doc.spans["sc"] = spans options = { "colors": colors, "ents": list(colors.keys()), "style": "ent", "manual": True } html = displacy.render(doc, style="span", options=options) # Add custom styling to the entity visualization styled_html = f"""
Entity types found: {' '.join([f'{entity_type}' for entity_type in colors.keys()])}
{html}
""" return styled_html def create_graph(json_data): G = nx.DiGraph() # Using DiGraph for directed graph # Add nodes for node in json_data['nodes']: G.add_node(node['id'], title=f"{node['type']}: {node['detailed_type']}", group=node['type']) # Group nodes by type # Add edges for edge in json_data['edges']: G.add_edge(edge['from'], edge['to'], title=edge['label'], label=edge['label']) # Create network visualization nt = Network( width="100%", height="600px", directed=True, notebook=False, bgcolor="#fafafa", font_color="#1e293b" ) # Configure network nt.from_nx(G) nt.barnes_hut( gravity=-3000, central_gravity=0.3, spring_length=150, spring_strength=0.001, damping=0.09, overlap=0, ) # Create color groups for node types node_types = {node['type'] for node in json_data['nodes']} colors = {} for i, node_type in enumerate(node_types): hue = (i * 137) % 360 # Golden ratio to distribute colors colors[node_type] = f"hsl({hue}, 70%, 70%)" # Customize nodes for node in nt.nodes: node_data = next((n for n in json_data['nodes'] if n['id'] == node['id']), None) if node_data: node_type = node_data['type'] node['color'] = colors.get(node_type, "#bfdbfe") node['shape'] = 'dot' node['size'] = 20 node['borderWidth'] = 2 node['borderWidthSelected'] = 4 node['font'] = {'size': 14, 'color': '#1e293b', 'face': 'Inter, Arial'} # Customize edges for edge in nt.edges: edge['color'] = {'color': '#94a3b8', 'highlight': '#6366f1', 'hover': '#818cf8'} edge['width'] = 1.5 edge['selectionWidth'] = 2 edge['hoverWidth'] = 2 edge['arrows'] = {'to': {'enabled': True, 'type': 'arrow'}} edge['smooth'] = {'type': 'continuous', 'roundness': 0.2} edge['font'] = {'size': 12, 'color': '#4b5563', 'face': 'Inter, Arial', 'strokeWidth': 2, 'strokeColor': '#ffffff'} # Generate HTML html = nt.generate_html() html = html.replace("'", '"') html = html.replace('height: 600px;', 'height: 600px; border-radius: 8px;') return f"""""" def process_and_visualize(text, model, progress=gr.Progress()): if not text or not model: raise gr.Error("⚠️ Please provide both text and model") # Progress updates progress(0.1, "Initializing...") time.sleep(0.2) # Small delay for UI feedback # Extract graph progress(0.2, "Extracting knowledge graph...") json_data = extract(text, model) # Entity visualization progress(0.6, "Identifying entities...") entities_viz = create_custom_entity_viz(json_data, text) # Graph visualization progress(0.8, "Building graph visualization...") graph_html = create_graph(json_data) # Statistics entity_types = {} for node in json_data['nodes']: entity_type = node['type'] if entity_type in entity_types: entity_types[entity_type] += 1 else: entity_types[entity_type] = 1 stats_html = f"""

πŸ“Š Extraction Results

βœ… Successfully extracted {len(json_data['nodes'])} entities and {len(json_data['edges'])} relationships.

Entity Types:

{''.join([f'{entity_type}: {count}' for entity_type, count in entity_types.items()])}
""" progress(1.0, "Done!") return graph_html, entities_viz, json_data, stats_html def language_info(): return """

🌍 Multilingual Support

This application supports text analysis in multiple languages, including:

English πŸ‡¬πŸ‡§ Korean πŸ‡°πŸ‡· Spanish πŸ‡ͺπŸ‡Έ French πŸ‡«πŸ‡· German πŸ‡©πŸ‡ͺ Japanese πŸ‡―πŸ‡΅ Chinese πŸ‡¨πŸ‡³ And more...
""" def tips_html(): return """

πŸ’‘ Tips for Best Results

""" # Examples in multiple languages EXAMPLES = [ [handle_text("""Legendary rock band Aerosmith has officially announced their retirement from touring after 54 years, citing lead singer Steven Tyler's unrecoverable vocal cord injury. The decision comes after months of unsuccessful treatment for Tyler's fractured larynx, which he suffered in September 2023.""")], [handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI) in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe, pleaded not guilty to the charges.""")], [handle_text("""세계적인 기술 κΈ°μ—… μ‚Όμ„±μ „μžλŠ” μƒˆλ‘œμš΄ 인곡지λŠ₯ 기반 μŠ€λ§ˆνŠΈν°μ„ μ˜¬ν•΄ ν•˜λ°˜κΈ°μ— μΆœμ‹œν•  μ˜ˆμ •μ΄λΌκ³  λ°œν‘œν–ˆλ‹€. 이 μŠ€λ§ˆνŠΈν°μ€ ν˜„μž¬ 개발 쀑인 κ°€λŸ­μ‹œ μ‹œλ¦¬μ¦ˆμ˜ μ΅œμ‹ μž‘μœΌλ‘œ, κ°•λ ₯ν•œ AI κΈ°λŠ₯κ³Ό ν˜μ‹ μ μΈ 카메라 μ‹œμŠ€ν…œμ„ νƒ‘μž¬ν•  κ²ƒμœΌλ‘œ μ•Œλ €μ‘Œλ‹€. μ‚Όμ„±μ „μžμ˜ CEOλŠ” 이번 μ‹ μ œν’ˆμ΄ 슀마트폰 μ‹œμž₯에 μƒˆλ‘œμš΄ ν˜μ‹ μ„ κ°€μ Έμ˜¬ 것이라고 μ „λ§ν–ˆλ‹€.""")], [handle_text("""ν•œκ΅­ μ˜ν™” '기생좩'은 2020λ…„ 아카데미 μ‹œμƒμ‹μ—μ„œ μž‘ν’ˆμƒ, 감독상, 각본상, κ΅­μ œμ˜ν™”μƒ λ“± 4개 뢀문을 μˆ˜μƒν•˜λ©° 역사λ₯Ό μƒˆλ‘œ 썼닀. λ΄‰μ€€ν˜Έ 감독이 μ—°μΆœν•œ 이 μ˜ν™”λŠ” ν•œκ΅­ μ˜ν™” 졜초둜 μΉΈ μ˜ν™”μ œ ν™©κΈˆμ’…λ €μƒλ„ μˆ˜μƒν–ˆμœΌλ©°, μ „ μ„Έκ³„μ μœΌλ‘œ μ—„μ²­λ‚œ ν₯ν–‰κ³Ό ν‰λ‹¨μ˜ ν˜Έν‰μ„ λ°›μ•˜λ‹€.""")] ] # Main UI with gr.Blocks(css=CUSTOM_CSS, title="🧠 Phi-3 Knowledge Graph Explorer") as demo: # Header gr.Markdown("# 🧠 Phi-3 Knowledge Graph Explorer") gr.Markdown("### ✨ Extract and visualize knowledge graphs from text in any language") with gr.Row(): with gr.Column(scale=2): input_text = gr.TextArea( label="πŸ“ Enter your text", placeholder="Paste or type your text here...", lines=10 ) with gr.Row(): input_model = gr.Dropdown( MODEL_LIST, label="πŸ€– Model", value=MODEL_LIST[0] if MODEL_LIST else None, info="Select the model to use for extraction" ) with gr.Column(): submit_button = gr.Button("πŸ” Extract & Visualize", variant="primary") clear_button = gr.Button("πŸ”„ Clear", variant="secondary") # Multilingual support info gr.HTML(language_info()) # Examples section gr.Examples( examples=EXAMPLES, inputs=input_text, label="πŸ“š Example Texts (English & Korean)" ) # Tips gr.HTML(tips_html()) with gr.Column(scale=3): # Stats output stats_output = gr.HTML(label="") # Tabs for different visualizations with gr.Tabs(): with gr.TabItem("πŸ”„ Knowledge Graph"): output_graph = gr.HTML() with gr.TabItem("🏷️ Entity Recognition"): output_entity_viz = gr.HTML() with gr.TabItem("πŸ“Š JSON Data"): output_json = gr.JSON() # Footer gr.HTML(""" """) # Set up event handlers submit_button.click( fn=process_and_visualize, inputs=[input_text, input_model], outputs=[output_graph, output_entity_viz, output_json, stats_output] ) clear_button.click( fn=lambda: [None, None, None, ""], inputs=[], outputs=[output_graph, output_entity_viz, output_json, stats_output] ) # Launch the app demo.launch(share=False)