import spaces
import gradio as gr
from phi3_instruct_graph import MODEL_LIST, Phi3InstructGraph
import rapidjson
from pyvis.network import Network
import networkx as nx
import spacy
from spacy import displacy
from spacy.tokens import Span
import random
import time
# Set up the theme and styling
CUSTOM_CSS = """
.gradio-container {
font-family: 'Inter', 'Segoe UI', Roboto, sans-serif;
}
.gr-prose h1 {
font-size: 2.5rem !important;
margin-bottom: 0.5rem !important;
background: linear-gradient(90deg, #4338ca, #a855f7);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.gr-prose h2 {
font-size: 1.8rem !important;
margin-top: 1rem !important;
}
.info-box {
padding: 1rem;
border-radius: 0.5rem;
background-color: #f3f4f6;
margin-bottom: 1rem;
border-left: 4px solid #6366f1;
}
.language-badge {
display: inline-block;
padding: 0.25rem 0.5rem;
border-radius: 9999px;
font-size: 0.75rem;
font-weight: 600;
background-color: #e0e7ff;
color: #4338ca;
margin-right: 0.5rem;
margin-bottom: 0.5rem;
}
.footer {
text-align: center;
margin-top: 2rem;
padding-top: 1rem;
border-top: 1px solid #e2e8f0;
font-size: 0.875rem;
color: #64748b;
}
"""
# Color utilities
def get_random_light_color():
r = random.randint(150, 255)
g = random.randint(150, 255)
b = random.randint(150, 255)
return f"#{r:02x}{g:02x}{b:02x}"
# Text processing helper
def handle_text(text):
return " ".join(text.split())
# Core extraction function
@spaces.GPU
def extract(text, model):
model = Phi3InstructGraph(model=model)
try:
result = model.extract(text)
return rapidjson.loads(result)
except Exception as e:
raise gr.Error(f"π¨ Extraction failed: {str(e)}")
def find_token_indices(doc, substring, text):
result = []
start_index = text.find(substring)
while start_index != -1:
end_index = start_index + len(substring)
start_token = None
end_token = None
for token in doc:
if token.idx == start_index:
start_token = token.i
if token.idx + len(token) == end_index:
end_token = token.i + 1
if start_token is not None and end_token is not None:
result.append({
"start": start_token,
"end": end_token
})
# Search for next occurrence
start_index = text.find(substring, end_index)
return result
def create_custom_entity_viz(data, full_text):
nlp = spacy.blank("xx")
doc = nlp(full_text)
spans = []
colors = {}
for node in data["nodes"]:
entity_spans = find_token_indices(doc, node["id"], full_text)
for dataentity in entity_spans:
start = dataentity["start"]
end = dataentity["end"]
if start < len(doc) and end <= len(doc):
# Check for overlapping spans
overlapping = any(s.start < end and start < s.end for s in spans)
if not overlapping:
span = Span(doc, start, end, label=node["type"])
spans.append(span)
if node["type"] not in colors:
colors[node["type"]] = get_random_light_color()
doc.set_ents(spans, default="unmodified")
doc.spans["sc"] = spans
options = {
"colors": colors,
"ents": list(colors.keys()),
"style": "ent",
"manual": True
}
html = displacy.render(doc, style="span", options=options)
# Add custom styling to the entity visualization
styled_html = f"""
Entity types found:
{' '.join([f'{entity_type}' for entity_type in colors.keys()])}
{html}
"""
return styled_html
def create_graph(json_data):
G = nx.DiGraph() # Using DiGraph for directed graph
# Add nodes
for node in json_data['nodes']:
G.add_node(node['id'],
title=f"{node['type']}: {node['detailed_type']}",
group=node['type']) # Group nodes by type
# Add edges
for edge in json_data['edges']:
G.add_edge(edge['from'], edge['to'], title=edge['label'], label=edge['label'])
# Create network visualization
nt = Network(
width="100%",
height="600px",
directed=True,
notebook=False,
bgcolor="#fafafa",
font_color="#1e293b"
)
# Configure network
nt.from_nx(G)
nt.barnes_hut(
gravity=-3000,
central_gravity=0.3,
spring_length=150,
spring_strength=0.001,
damping=0.09,
overlap=0,
)
# Create color groups for node types
node_types = {node['type'] for node in json_data['nodes']}
colors = {}
for i, node_type in enumerate(node_types):
hue = (i * 137) % 360 # Golden ratio to distribute colors
colors[node_type] = f"hsl({hue}, 70%, 70%)"
# Customize nodes
for node in nt.nodes:
node_data = next((n for n in json_data['nodes'] if n['id'] == node['id']), None)
if node_data:
node_type = node_data['type']
node['color'] = colors.get(node_type, "#bfdbfe")
node['shape'] = 'dot'
node['size'] = 20
node['borderWidth'] = 2
node['borderWidthSelected'] = 4
node['font'] = {'size': 14, 'color': '#1e293b', 'face': 'Inter, Arial'}
# Customize edges
for edge in nt.edges:
edge['color'] = {'color': '#94a3b8', 'highlight': '#6366f1', 'hover': '#818cf8'}
edge['width'] = 1.5
edge['selectionWidth'] = 2
edge['hoverWidth'] = 2
edge['arrows'] = {'to': {'enabled': True, 'type': 'arrow'}}
edge['smooth'] = {'type': 'continuous', 'roundness': 0.2}
edge['font'] = {'size': 12, 'color': '#4b5563', 'face': 'Inter, Arial', 'strokeWidth': 2, 'strokeColor': '#ffffff'}
# Generate HTML
html = nt.generate_html()
html = html.replace("'", '"')
html = html.replace('height: 600px;', 'height: 600px; border-radius: 8px;')
return f""""""
def process_and_visualize(text, model, progress=gr.Progress()):
if not text or not model:
raise gr.Error("β οΈ Please provide both text and model")
# Progress updates
progress(0.1, "Initializing...")
time.sleep(0.2) # Small delay for UI feedback
# Extract graph
progress(0.2, "Extracting knowledge graph...")
json_data = extract(text, model)
# Entity visualization
progress(0.6, "Identifying entities...")
entities_viz = create_custom_entity_viz(json_data, text)
# Graph visualization
progress(0.8, "Building graph visualization...")
graph_html = create_graph(json_data)
# Statistics
entity_types = {}
for node in json_data['nodes']:
entity_type = node['type']
if entity_type in entity_types:
entity_types[entity_type] += 1
else:
entity_types[entity_type] = 1
stats_html = f"""
π Extraction Results
β
Successfully extracted {len(json_data['nodes'])} entities and {len(json_data['edges'])} relationships.
Entity Types:
{''.join([f'{entity_type}: {count}' for entity_type, count in entity_types.items()])}
"""
progress(1.0, "Done!")
return graph_html, entities_viz, json_data, stats_html
def language_info():
return """
π Multilingual Support
This application supports text analysis in multiple languages, including:
English π¬π§
Korean π°π·
Spanish πͺπΈ
French π«π·
German π©πͺ
Japanese π―π΅
Chinese π¨π³
And more...
"""
def tips_html():
return """
π‘ Tips for Best Results
- Use clear, descriptive sentences with well-defined relationships
- Include specific entities, events, dates, and locations for better extraction
- Longer texts provide more context for relationship identification
- Try different models to compare extraction results
"""
# Examples in multiple languages
EXAMPLES = [
[handle_text("""Legendary rock band Aerosmith has officially announced their retirement from touring after 54 years, citing
lead singer Steven Tyler's unrecoverable vocal cord injury.
The decision comes after months of unsuccessful treatment for Tyler's fractured larynx,
which he suffered in September 2023.""")],
[handle_text("""Pop star Justin Timberlake, 43, had his driver's license suspended by a New York judge during a virtual
court hearing on August 2, 2024. The suspension follows Timberlake's arrest for driving while intoxicated (DWI)
in Sag Harbor on June 18. Timberlake, who is currently on tour in Europe,
pleaded not guilty to the charges.""")],
[handle_text("""μΈκ³μ μΈ κΈ°μ κΈ°μ
μΌμ±μ μλ μλ‘μ΄ μΈκ³΅μ§λ₯ κΈ°λ° μ€λ§νΈν°μ μ¬ν΄ νλ°κΈ°μ μΆμν μμ μ΄λΌκ³ λ°ννλ€.
μ΄ μ€λ§νΈν°μ νμ¬ κ°λ° μ€μΈ κ°€λμ μ리μ¦μ μ΅μ μμΌλ‘, κ°λ ₯ν AI κΈ°λ₯κ³Ό νμ μ μΈ μΉ΄λ©λΌ μμ€ν
μ νμ¬ν κ²μΌλ‘ μλ €μ‘λ€.
μΌμ±μ μμ CEOλ μ΄λ² μ μ νμ΄ μ€λ§νΈν° μμ₯μ μλ‘μ΄ νμ μ κ°μ Έμ¬ κ²μ΄λΌκ³ μ λ§νλ€.""")],
[handle_text("""νκ΅ μν 'κΈ°μμΆ©'μ 2020λ
μμΉ΄λ°λ―Έ μμμμμ μνμ, κ°λ
μ, κ°λ³Έμ, κ΅μ μνμ λ± 4κ° λΆλ¬Έμ μμνλ©° μμ¬λ₯Ό μλ‘ μΌλ€.
λ΄μ€νΈ κ°λ
μ΄ μ°μΆν μ΄ μνλ νκ΅ μν μ΅μ΄λ‘ μΉΈ μνμ ν©κΈμ’
λ €μλ μμνμΌλ©°, μ μΈκ³μ μΌλ‘ μμ²λ ν₯νκ³Ό
νλ¨μ νΈνμ λ°μλ€.""")]
]
# Main UI
with gr.Blocks(css=CUSTOM_CSS, title="π§ Phi-3 Knowledge Graph Explorer") as demo:
# Header
gr.Markdown("# π§ Phi-3 Knowledge Graph Explorer")
gr.Markdown("### β¨ Extract and visualize knowledge graphs from text in any language")
with gr.Row():
with gr.Column(scale=2):
input_text = gr.TextArea(
label="π Enter your text",
placeholder="Paste or type your text here...",
lines=10
)
with gr.Row():
input_model = gr.Dropdown(
MODEL_LIST,
label="π€ Model",
value=MODEL_LIST[0] if MODEL_LIST else None,
info="Select the model to use for extraction"
)
with gr.Column():
submit_button = gr.Button("π Extract & Visualize", variant="primary")
clear_button = gr.Button("π Clear", variant="secondary")
# Multilingual support info
gr.HTML(language_info())
# Examples section
gr.Examples(
examples=EXAMPLES,
inputs=input_text,
label="π Example Texts (English & Korean)"
)
# Tips
gr.HTML(tips_html())
with gr.Column(scale=3):
# Stats output
stats_output = gr.HTML(label="")
# Tabs for different visualizations
with gr.Tabs():
with gr.TabItem("π Knowledge Graph"):
output_graph = gr.HTML()
with gr.TabItem("π·οΈ Entity Recognition"):
output_entity_viz = gr.HTML()
with gr.TabItem("π JSON Data"):
output_json = gr.JSON()
# Footer
gr.HTML("""
""")
# Set up event handlers
submit_button.click(
fn=process_and_visualize,
inputs=[input_text, input_model],
outputs=[output_graph, output_entity_viz, output_json, stats_output]
)
clear_button.click(
fn=lambda: [None, None, None, ""],
inputs=[],
outputs=[output_graph, output_entity_viz, output_json, stats_output]
)
# Launch the app
demo.launch(share=False)