Spaces:
Running
Running
File size: 15,721 Bytes
db6a3b7 3057b36 7d475c1 db6a3b7 f96a94d 9880f3d 7d475c1 db6a3b7 9880f3d db6a3b7 9880f3d db6a3b7 f96a94d b070f28 5a70405 ef607fe 5a70405 dbbe8de b070f28 dbbe8de a135ad5 f96a94d b209823 0ace4dc 23a34ba bd46f72 f96a94d 52f4e8f 9c4daaa 52f4e8f f96a94d a7544c9 a898014 0758696 e8095ff 0758696 46cbcb2 150c6e2 46cbcb2 150c6e2 46cbcb2 9880f3d 599ec34 f96a94d 0758696 5a70405 f96a94d 0758696 dc03769 f96a94d 7d475c1 e8095ff 23a34ba f96a94d ab95920 e8095ff d1d2845 ab95920 d1d2845 7bec25c d1d2845 e8095ff f96a94d 599ec34 f96a94d 23a34ba f96a94d 23a34ba f96a94d 23a34ba ee210e2 23a34ba a898014 2e78ab8 db6a3b7 a135ad5 599ec34 f96a94d 599ec34 f96a94d 599ec34 d1d2845 521fdd3 db6a3b7 03489b3 59ca7f8 5a70405 03489b3 5a70405 03489b3 d1d2845 f96a94d 03489b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from diffusers import FluxPipeline
from typing import Tuple, Dict, Any # Tuple import 추가
# 파일 상단의 import 문
import transformers
from transformers import pipeline as transformers_pipeline
from transformers import Pipeline
# 전역 변수 초기화
class GlobalVars:
def __init__(self):
self.translator = None
self.trellis_pipeline = None
self.flux_pipe = None
g = GlobalVars()
def initialize_models(device):
# 3D 생성 파이프라인
g.trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
"JeffreyXiang/TRELLIS-image-large"
)
# 이미지 생성 파이프라인
g.flux_pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16,
device_map="balanced"
)
# Hyper-SD LoRA 로드
lora_path = hf_hub_download(
"ByteDance/Hyper-SD",
"Hyper-FLUX.1-dev-8steps-lora.safetensors",
use_auth_token=HF_TOKEN
)
g.flux_pipe.load_lora_weights(lora_path)
g.flux_pipe.fuse_lora(lora_scale=0.125)
# 번역기 초기화
g.translator = transformers_pipeline(
"translation",
model="Helsinki-NLP/opus-mt-ko-en",
device=device
)
# CUDA 메모리 관리 설정
torch.cuda.empty_cache()
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True
# 환경 변수 설정
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
os.environ['SPCONV_ALGO'] = 'native'
os.environ['SPARSE_BACKEND'] = 'native'
# Hugging Face 토큰 설정
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
raise ValueError("HF_TOKEN environment variable is not set")
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
os.environ['SPCONV_ALGO'] = 'native'
torch.backends.cuda.matmul.allow_tf32 = True
class timer:
def __init__(self, method_name="timed process"):
self.method = method_name
def __enter__(self):
self.start = time.time()
print(f"{self.method} starts")
def __exit__(self, exc_type, exc_val, exc_tb):
end = time.time()
print(f"{self.method} took {str(round(end - self.start, 2))}s")
def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
if image is None:
print("Error: Input image is None")
return "", None
try:
# webp 이미지를 RGB로 변환
if isinstance(image, str) and image.endswith('.webp'):
image = Image.open(image).convert('RGB')
elif isinstance(image, Image.Image):
image = image.convert('RGB')
trial_id = str(uuid.uuid4())
processed_image = g.trellis_pipeline.preprocess_image(image)
if processed_image is not None:
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image
else:
print("Error: Processed image is None")
return "", None
except Exception as e:
print(f"Error in image preprocessing: {str(e)}")
return "", None
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
outputs = g.trellis_pipeline.run( # pipeline을 g.trellis_pipeline으로 수정
Image.open(f"{TMP_DIR}/{trial_id}.png"),
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = uuid.uuid4()
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
return state, video_path
@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path, glb_path
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
@spaces.GPU
def text_to_image(prompt: str, height: int, width: int, steps: int, scales: float, seed: int) -> Image.Image:
try:
# CUDA 메모리 정리
if torch.cuda.is_available():
torch.cuda.empty_cache()
# 한글 감지 및 번역
def contains_korean(text):
return any(ord('가') <= ord(c) <= ord('힣') for c in text)
# 프롬프트 전처리
if contains_korean(prompt):
translated = g.translator(prompt)[0]['translation_text']
prompt = translated
# 프롬프트 형식 강제
formatted_prompt = f"wbgmsst, 3D, {prompt}, white background"
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
generated_image = g.flux_pipe(
prompt=[formatted_prompt],
generator=torch.Generator().manual_seed(int(seed)),
num_inference_steps=int(steps),
guidance_scale=float(scales),
height=int(height),
width=int(width),
max_sequence_length=256
).images[0]
if generated_image is not None:
trial_id = str(uuid.uuid4())
generated_image.save(f"{TMP_DIR}/{trial_id}.png")
return generated_image
else:
print("Error: Generated image is None")
return None
except Exception as e:
print(f"Error in image generation: {str(e)}")
return None
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""## Craft3D""")
# Examples 이미지 로드
example_dir = "assets/example_image/"
example_images = []
if os.path.exists(example_dir):
for file in os.listdir(example_dir):
if file.endswith('.webp'):
example_images.append(os.path.join(example_dir, file))
with gr.Row():
with gr.Column():
text_prompt = gr.Textbox(
label="Text Prompt",
placeholder="Describe what you want to create...",
lines=3
)
# 이미지 프롬프트를 갤러리 전에 정의
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
# Examples 갤러리를 image_prompt 아래로 이동
if example_images:
with gr.Row():
gallery = gr.Gallery(
value=example_images,
label="Example Images",
show_label=True,
elem_id="gallery",
columns=8,
rows=3,
height=200,
allow_preview=True
)
# Gallery 클릭 이벤트 추가
def load_example(evt: gr.SelectData):
return example_images[evt.index]
gallery.select(
load_example,
None,
image_prompt,
show_progress=True
)
with gr.Accordion("Image Generation Settings", open=False):
with gr.Row():
height = gr.Slider(
label="Height",
minimum=256,
maximum=1152,
step=64,
value=1024
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=1152,
step=64,
value=1024
)
with gr.Row():
steps = gr.Slider(
label="Inference Steps",
minimum=6,
maximum=25,
step=1,
value=8
)
scales = gr.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=5.0,
step=0.1,
value=3.5
)
seed = gr.Number(
label="Seed",
value=lambda: torch.randint(0, MAX_SEED, (1,)).item(),
precision=0
)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
generate_image_btn = gr.Button("Generate Image")
with gr.Accordion("3D Generation Settings", open=False):
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Structure Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Structure Sampling Steps", value=12, step=1)
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Latent Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Latent Sampling Steps", value=12, step=1)
generate_3d_btn = gr.Button("Generate 3D")
with gr.Accordion("GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Handlers
generate_image_btn.click(
text_to_image,
inputs=[text_prompt, height, width, steps, scales, seed],
outputs=[image_prompt]
).then(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt]
)
# 나머지 핸들러들
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_3d_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
activate_button,
outputs=[extract_glb_btn],
)
video_output.clear(
deactivate_button,
outputs=[extract_glb_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
activate_button,
outputs=[download_glb],
)
model_output.clear(
deactivate_button,
outputs=[download_glb],
)
if __name__ == "__main__":
try:
# CPU 모드로 초기화
device = "cpu"
print(f"Using device: {device}")
# 모델 초기화
initialize_models(device)
# 초기 이미지 전처리 테스트
try:
test_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
g.trellis_pipeline.preprocess_image(test_image)
except Exception as e:
print(f"Warning: Initial preprocessing test failed: {e}")
# Gradio 인터페이스 실행
demo.launch(
allowed_paths=[PERSISTENT_DIR],
enable_queue=True,
max_threads=4,
show_error=True
)
except Exception as e:
print(f"Error during initialization: {e}")
raise |