File size: 15,721 Bytes
db6a3b7
3057b36
7d475c1
db6a3b7
f96a94d
 
 
 
 
 
9880f3d
7d475c1
db6a3b7
 
9880f3d
db6a3b7
 
9880f3d
db6a3b7
f96a94d
b070f28
5a70405
ef607fe
 
5a70405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbbe8de
 
 
 
b070f28
dbbe8de
 
 
 
a135ad5
f96a94d
 
 
 
b209823
0ace4dc
 
23a34ba
bd46f72
f96a94d
 
 
 
 
 
 
 
 
 
 
52f4e8f
9c4daaa
52f4e8f
f96a94d
 
 
 
 
 
 
 
 
a7544c9
a898014
0758696
 
 
 
 
e8095ff
 
 
 
 
 
0758696
 
 
 
 
 
 
 
 
 
 
 
46cbcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150c6e2
46cbcb2
 
 
 
 
 
 
 
 
 
 
 
 
150c6e2
46cbcb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9880f3d
599ec34
f96a94d
0758696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a70405
f96a94d
 
 
 
 
 
 
 
 
0758696
 
 
 
 
 
 
 
 
 
 
dc03769
f96a94d
 
7d475c1
e8095ff
 
 
 
 
 
 
 
23a34ba
 
f96a94d
 
 
 
 
 
ab95920
 
 
 
e8095ff
d1d2845
 
 
 
 
 
ab95920
 
d1d2845
 
7bec25c
d1d2845
 
 
 
 
 
 
 
 
 
 
e8095ff
f96a94d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
599ec34
 
f96a94d
 
 
 
 
23a34ba
f96a94d
23a34ba
f96a94d
23a34ba
 
 
 
ee210e2
23a34ba
 
 
 
 
a898014
2e78ab8
db6a3b7
a135ad5
599ec34
 
f96a94d
 
599ec34
 
 
f96a94d
599ec34
 
d1d2845
521fdd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6a3b7
 
03489b3
59ca7f8
 
 
 
5a70405
 
03489b3
 
 
 
5a70405
03489b3
 
 
 
d1d2845
 
 
 
 
 
f96a94d
03489b3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import time
from os import path
import shutil
from datetime import datetime
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from diffusers import FluxPipeline
from typing import Tuple, Dict, Any  # Tuple import 추가
# 파일 상단의 import 문
import transformers
from transformers import pipeline as transformers_pipeline
from transformers import Pipeline

# 전역 변수 초기화
class GlobalVars:
    def __init__(self):
        self.translator = None
        self.trellis_pipeline = None
        self.flux_pipe = None

g = GlobalVars()

def initialize_models(device):
    # 3D 생성 파이프라인
    g.trellis_pipeline = TrellisImageTo3DPipeline.from_pretrained(
        "JeffreyXiang/TRELLIS-image-large"
    )
    
    # 이미지 생성 파이프라인
    g.flux_pipe = FluxPipeline.from_pretrained(
        "black-forest-labs/FLUX.1-dev",
        torch_dtype=torch.bfloat16,
        device_map="balanced"
    )
    
    # Hyper-SD LoRA 로드
    lora_path = hf_hub_download(
        "ByteDance/Hyper-SD",
        "Hyper-FLUX.1-dev-8steps-lora.safetensors",
        use_auth_token=HF_TOKEN
    )
    g.flux_pipe.load_lora_weights(lora_path)
    g.flux_pipe.fuse_lora(lora_scale=0.125)
    
    # 번역기 초기화
    g.translator = transformers_pipeline(
        "translation", 
        model="Helsinki-NLP/opus-mt-ko-en",
        device=device
    )
    
# CUDA 메모리 관리 설정
torch.cuda.empty_cache()
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.benchmark = True

# 환경 변수 설정
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
os.environ['SPCONV_ALGO'] = 'native'
os.environ['SPARSE_BACKEND'] = 'native'

# Hugging Face 토큰 설정
HF_TOKEN = os.getenv("HF_TOKEN")
if HF_TOKEN is None:
    raise ValueError("HF_TOKEN environment variable is not set")

MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)

# Setup and initialization code
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
PERSISTENT_DIR = os.environ.get("PERSISTENT_DIR", ".")
gallery_path = path.join(PERSISTENT_DIR, "gallery")

os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
os.environ['SPCONV_ALGO'] = 'native'

torch.backends.cuda.matmul.allow_tf32 = True



class timer:
    def __init__(self, method_name="timed process"):
        self.method = method_name
    def __enter__(self):
        self.start = time.time()
        print(f"{self.method} starts")
    def __exit__(self, exc_type, exc_val, exc_tb):
        end = time.time()
        print(f"{self.method} took {str(round(end - self.start, 2))}s")

def preprocess_image(image: Image.Image) -> Tuple[str, Image.Image]:
    if image is None:
        print("Error: Input image is None")
        return "", None
        
    try:
        # webp 이미지를 RGB로 변환
        if isinstance(image, str) and image.endswith('.webp'):
            image = Image.open(image).convert('RGB')
        elif isinstance(image, Image.Image):
            image = image.convert('RGB')
            
        trial_id = str(uuid.uuid4())
        processed_image = g.trellis_pipeline.preprocess_image(image)
        if processed_image is not None:
            processed_image.save(f"{TMP_DIR}/{trial_id}.png")
            return trial_id, processed_image
        else:
            print("Error: Processed image is None")
            return "", None
    except Exception as e:
        print(f"Error in image preprocessing: {str(e)}")
        return "", None
        
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
        'trial_id': trial_id,
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh, state['trial_id']

@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
    if randomize_seed:
        seed = np.random.randint(0, MAX_SEED)
    outputs = g.trellis_pipeline.run(  # pipeline을 g.trellis_pipeline으로 수정
        Image.open(f"{TMP_DIR}/{trial_id}.png"),
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )

    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    trial_id = uuid.uuid4()
    video_path = f"{TMP_DIR}/{trial_id}.mp4"
    os.makedirs(os.path.dirname(video_path), exist_ok=True)
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
    return state, video_path


@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
    gs, mesh, trial_id = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = f"{TMP_DIR}/{trial_id}.glb"
    glb.export(glb_path)
    return glb_path, glb_path


def activate_button() -> gr.Button:
    return gr.Button(interactive=True)


def deactivate_button() -> gr.Button:
    return gr.Button(interactive=False)

@spaces.GPU
def text_to_image(prompt: str, height: int, width: int, steps: int, scales: float, seed: int) -> Image.Image:
    try:
        # CUDA 메모리 정리
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            
        # 한글 감지 및 번역
        def contains_korean(text):
            return any(ord('가') <= ord(c) <= ord('힣') for c in text)
        
        # 프롬프트 전처리
        if contains_korean(prompt):
            translated = g.translator(prompt)[0]['translation_text']
            prompt = translated
        
        # 프롬프트 형식 강제
        formatted_prompt = f"wbgmsst, 3D, {prompt}, white background"
        
        with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
            generated_image = g.flux_pipe(
                prompt=[formatted_prompt],
                generator=torch.Generator().manual_seed(int(seed)),
                num_inference_steps=int(steps),
                guidance_scale=float(scales),
                height=int(height),
                width=int(width),
                max_sequence_length=256
            ).images[0]
            
            if generated_image is not None:
                trial_id = str(uuid.uuid4())
                generated_image.save(f"{TMP_DIR}/{trial_id}.png")
                return generated_image
            else:
                print("Error: Generated image is None")
                return None
                
    except Exception as e:
        print(f"Error in image generation: {str(e)}")
        return None

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""## Craft3D""")
    
    # Examples 이미지 로드
    example_dir = "assets/example_image/"
    example_images = []
    if os.path.exists(example_dir):
        for file in os.listdir(example_dir):
            if file.endswith('.webp'):
                example_images.append(os.path.join(example_dir, file))
    
    with gr.Row():
        with gr.Column():
            text_prompt = gr.Textbox(
                label="Text Prompt",
                placeholder="Describe what you want to create...",
                lines=3
            )
            
            # 이미지 프롬프트를 갤러리 전에 정의
            image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=300)
            
            # Examples 갤러리를 image_prompt 아래로 이동
            if example_images:
                with gr.Row():
                    gallery = gr.Gallery(
                        value=example_images,
                        label="Example Images",
                        show_label=True,
                        elem_id="gallery",
                        columns=8,
                        rows=3,
                        height=200,
                        allow_preview=True
                    )
                    
                    # Gallery 클릭 이벤트 추가
                    def load_example(evt: gr.SelectData):
                        return example_images[evt.index]
                    
                    gallery.select(
                        load_example,
                        None,
                        image_prompt,
                        show_progress=True
                    )
            
            with gr.Accordion("Image Generation Settings", open=False):
                with gr.Row():
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=1152,
                        step=64,
                        value=1024
                    )
                
                with gr.Row():
                    steps = gr.Slider(
                        label="Inference Steps",
                        minimum=6,
                        maximum=25,
                        step=1,
                        value=8
                    )
                    scales = gr.Slider(
                        label="Guidance Scale",
                        minimum=0.0,
                        maximum=5.0,
                        step=0.1,
                        value=3.5
                    )
                
                seed = gr.Number(
                    label="Seed",
                    value=lambda: torch.randint(0, MAX_SEED, (1,)).item(),
                    precision=0
                )
                randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
            
            generate_image_btn = gr.Button("Generate Image")
            
            with gr.Accordion("3D Generation Settings", open=False):
                ss_guidance_strength = gr.Slider(0.0, 10.0, label="Structure Guidance Strength", value=7.5, step=0.1)
                ss_sampling_steps = gr.Slider(1, 50, label="Structure Sampling Steps", value=12, step=1)
                slat_guidance_strength = gr.Slider(0.0, 10.0, label="Latent Guidance Strength", value=3.0, step=0.1)
                slat_sampling_steps = gr.Slider(1, 50, label="Latent Sampling Steps", value=12, step=1)

            generate_3d_btn = gr.Button("Generate 3D")
            
            with gr.Accordion("GLB Extraction Settings", open=False):
                mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
                texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
            
            extract_glb_btn = gr.Button("Extract GLB", interactive=False)

        with gr.Column():
            video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
            model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
            download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
            
    trial_id = gr.Textbox(visible=False)
    output_buf = gr.State()

    # Handlers
    generate_image_btn.click(
        text_to_image,
        inputs=[text_prompt, height, width, steps, scales, seed],
        outputs=[image_prompt]
    ).then(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[trial_id, image_prompt]
    )

    # 나머지 핸들러들
    image_prompt.upload(
        preprocess_image,
        inputs=[image_prompt],
        outputs=[trial_id, image_prompt],
    )
    
    image_prompt.clear(
        lambda: '',
        outputs=[trial_id],
    )

    generate_3d_btn.click(
        image_to_3d,
        inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
        outputs=[output_buf, video_output],
    ).then(
        activate_button,
        outputs=[extract_glb_btn],
    )

    video_output.clear(
        deactivate_button,
        outputs=[extract_glb_btn],
    )

    extract_glb_btn.click(
        extract_glb,
        inputs=[output_buf, mesh_simplify, texture_size],
        outputs=[model_output, download_glb],
    ).then(
        activate_button,
        outputs=[download_glb],
    )

    model_output.clear(
        deactivate_button,
        outputs=[download_glb],
    )

if __name__ == "__main__":
    try:
        # CPU 모드로 초기화
        device = "cpu"
        print(f"Using device: {device}")
        
        # 모델 초기화
        initialize_models(device)
        
        # 초기 이미지 전처리 테스트
        try:
            test_image = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
            g.trellis_pipeline.preprocess_image(test_image)
        except Exception as e:
            print(f"Warning: Initial preprocessing test failed: {e}")
            
        # Gradio 인터페이스 실행
        demo.launch(
            allowed_paths=[PERSISTENT_DIR],
            enable_queue=True,
            max_threads=4,
            show_error=True
        )
        
    except Exception as e:
        print(f"Error during initialization: {e}")
        raise