Spaces:
Running
on
L40S
Running
on
L40S
File size: 5,181 Bytes
db6a3b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
from typing import *
import torch
import torch.nn as nn
from ..basic import SparseTensor
from ..linear import SparseLinear
from ..nonlinearity import SparseGELU
from ..attention import SparseMultiHeadAttention, SerializeMode
from ...norm import LayerNorm32
class SparseFeedForwardNet(nn.Module):
def __init__(self, channels: int, mlp_ratio: float = 4.0):
super().__init__()
self.mlp = nn.Sequential(
SparseLinear(channels, int(channels * mlp_ratio)),
SparseGELU(approximate="tanh"),
SparseLinear(int(channels * mlp_ratio), channels),
)
def forward(self, x: SparseTensor) -> SparseTensor:
return self.mlp(x)
class SparseTransformerBlock(nn.Module):
"""
Sparse Transformer block (MSA + FFN).
"""
def __init__(
self,
channels: int,
num_heads: int,
mlp_ratio: float = 4.0,
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
window_size: Optional[int] = None,
shift_sequence: Optional[int] = None,
shift_window: Optional[Tuple[int, int, int]] = None,
serialize_mode: Optional[SerializeMode] = None,
use_checkpoint: bool = False,
use_rope: bool = False,
qk_rms_norm: bool = False,
qkv_bias: bool = True,
ln_affine: bool = False,
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
self.attn = SparseMultiHeadAttention(
channels,
num_heads=num_heads,
attn_mode=attn_mode,
window_size=window_size,
shift_sequence=shift_sequence,
shift_window=shift_window,
serialize_mode=serialize_mode,
qkv_bias=qkv_bias,
use_rope=use_rope,
qk_rms_norm=qk_rms_norm,
)
self.mlp = SparseFeedForwardNet(
channels,
mlp_ratio=mlp_ratio,
)
def _forward(self, x: SparseTensor) -> SparseTensor:
h = x.replace(self.norm1(x.feats))
h = self.attn(h)
x = x + h
h = x.replace(self.norm2(x.feats))
h = self.mlp(h)
x = x + h
return x
def forward(self, x: SparseTensor) -> SparseTensor:
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False)
else:
return self._forward(x)
class SparseTransformerCrossBlock(nn.Module):
"""
Sparse Transformer cross-attention block (MSA + MCA + FFN).
"""
def __init__(
self,
channels: int,
ctx_channels: int,
num_heads: int,
mlp_ratio: float = 4.0,
attn_mode: Literal["full", "shift_window", "shift_sequence", "shift_order", "swin"] = "full",
window_size: Optional[int] = None,
shift_sequence: Optional[int] = None,
shift_window: Optional[Tuple[int, int, int]] = None,
serialize_mode: Optional[SerializeMode] = None,
use_checkpoint: bool = False,
use_rope: bool = False,
qk_rms_norm: bool = False,
qk_rms_norm_cross: bool = False,
qkv_bias: bool = True,
ln_affine: bool = False,
):
super().__init__()
self.use_checkpoint = use_checkpoint
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6)
self.self_attn = SparseMultiHeadAttention(
channels,
num_heads=num_heads,
type="self",
attn_mode=attn_mode,
window_size=window_size,
shift_sequence=shift_sequence,
shift_window=shift_window,
serialize_mode=serialize_mode,
qkv_bias=qkv_bias,
use_rope=use_rope,
qk_rms_norm=qk_rms_norm,
)
self.cross_attn = SparseMultiHeadAttention(
channels,
ctx_channels=ctx_channels,
num_heads=num_heads,
type="cross",
attn_mode="full",
qkv_bias=qkv_bias,
qk_rms_norm=qk_rms_norm_cross,
)
self.mlp = SparseFeedForwardNet(
channels,
mlp_ratio=mlp_ratio,
)
def _forward(self, x: SparseTensor, mod: torch.Tensor, context: torch.Tensor):
h = x.replace(self.norm1(x.feats))
h = self.self_attn(h)
x = x + h
h = x.replace(self.norm2(x.feats))
h = self.cross_attn(h, context)
x = x + h
h = x.replace(self.norm3(x.feats))
h = self.mlp(h)
x = x + h
return x
def forward(self, x: SparseTensor, context: torch.Tensor):
if self.use_checkpoint:
return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False)
else:
return self._forward(x, context)
|