Spaces:
Running
on
L40S
Running
on
L40S
File size: 6,231 Bytes
db6a3b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
from .full_attn import scaled_dot_product_attention
class MultiHeadRMSNorm(nn.Module):
def __init__(self, dim: int, heads: int):
super().__init__()
self.scale = dim ** 0.5
self.gamma = nn.Parameter(torch.ones(heads, dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return (F.normalize(x.float(), dim = -1) * self.gamma * self.scale).to(x.dtype)
class RotaryPositionEmbedder(nn.Module):
def __init__(self, hidden_size: int, in_channels: int = 3):
super().__init__()
assert hidden_size % 2 == 0, "Hidden size must be divisible by 2"
self.hidden_size = hidden_size
self.in_channels = in_channels
self.freq_dim = hidden_size // in_channels // 2
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim
self.freqs = 1.0 / (10000 ** self.freqs)
def _get_phases(self, indices: torch.Tensor) -> torch.Tensor:
self.freqs = self.freqs.to(indices.device)
phases = torch.outer(indices, self.freqs)
phases = torch.polar(torch.ones_like(phases), phases)
return phases
def _rotary_embedding(self, x: torch.Tensor, phases: torch.Tensor) -> torch.Tensor:
x_complex = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
x_rotated = x_complex * phases
x_embed = torch.view_as_real(x_rotated).reshape(*x_rotated.shape[:-1], -1).to(x.dtype)
return x_embed
def forward(self, q: torch.Tensor, k: torch.Tensor, indices: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
q (sp.SparseTensor): [..., N, D] tensor of queries
k (sp.SparseTensor): [..., N, D] tensor of keys
indices (torch.Tensor): [..., N, C] tensor of spatial positions
"""
if indices is None:
indices = torch.arange(q.shape[-2], device=q.device)
if len(q.shape) > 2:
indices = indices.unsqueeze(0).expand(q.shape[:-2] + (-1,))
phases = self._get_phases(indices.reshape(-1)).reshape(*indices.shape[:-1], -1)
if phases.shape[1] < self.hidden_size // 2:
phases = torch.cat([phases, torch.polar(
torch.ones(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device),
torch.zeros(*phases.shape[:-1], self.hidden_size // 2 - phases.shape[1], device=phases.device)
)], dim=-1)
q_embed = self._rotary_embedding(q, phases)
k_embed = self._rotary_embedding(k, phases)
return q_embed, k_embed
class MultiHeadAttention(nn.Module):
def __init__(
self,
channels: int,
num_heads: int,
ctx_channels: Optional[int]=None,
type: Literal["self", "cross"] = "self",
attn_mode: Literal["full", "windowed"] = "full",
window_size: Optional[int] = None,
shift_window: Optional[Tuple[int, int, int]] = None,
qkv_bias: bool = True,
use_rope: bool = False,
qk_rms_norm: bool = False,
):
super().__init__()
assert channels % num_heads == 0
assert type in ["self", "cross"], f"Invalid attention type: {type}"
assert attn_mode in ["full", "windowed"], f"Invalid attention mode: {attn_mode}"
assert type == "self" or attn_mode == "full", "Cross-attention only supports full attention"
if attn_mode == "windowed":
raise NotImplementedError("Windowed attention is not yet implemented")
self.channels = channels
self.head_dim = channels // num_heads
self.ctx_channels = ctx_channels if ctx_channels is not None else channels
self.num_heads = num_heads
self._type = type
self.attn_mode = attn_mode
self.window_size = window_size
self.shift_window = shift_window
self.use_rope = use_rope
self.qk_rms_norm = qk_rms_norm
if self._type == "self":
self.to_qkv = nn.Linear(channels, channels * 3, bias=qkv_bias)
else:
self.to_q = nn.Linear(channels, channels, bias=qkv_bias)
self.to_kv = nn.Linear(self.ctx_channels, channels * 2, bias=qkv_bias)
if self.qk_rms_norm:
self.q_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
self.k_rms_norm = MultiHeadRMSNorm(self.head_dim, num_heads)
self.to_out = nn.Linear(channels, channels)
if use_rope:
self.rope = RotaryPositionEmbedder(channels)
def forward(self, x: torch.Tensor, context: Optional[torch.Tensor] = None, indices: Optional[torch.Tensor] = None) -> torch.Tensor:
B, L, C = x.shape
if self._type == "self":
qkv = self.to_qkv(x)
qkv = qkv.reshape(B, L, 3, self.num_heads, -1)
if self.use_rope:
q, k, v = qkv.unbind(dim=2)
q, k = self.rope(q, k, indices)
qkv = torch.stack([q, k, v], dim=2)
if self.attn_mode == "full":
if self.qk_rms_norm:
q, k, v = qkv.unbind(dim=2)
q = self.q_rms_norm(q)
k = self.k_rms_norm(k)
h = scaled_dot_product_attention(q, k, v)
else:
h = scaled_dot_product_attention(qkv)
elif self.attn_mode == "windowed":
raise NotImplementedError("Windowed attention is not yet implemented")
else:
Lkv = context.shape[1]
q = self.to_q(x)
kv = self.to_kv(context)
q = q.reshape(B, L, self.num_heads, -1)
kv = kv.reshape(B, Lkv, 2, self.num_heads, -1)
if self.qk_rms_norm:
q = self.q_rms_norm(q)
k, v = kv.unbind(dim=2)
k = self.k_rms_norm(k)
h = scaled_dot_product_attention(q, k, v)
else:
h = scaled_dot_product_attention(q, kv)
h = h.reshape(B, L, -1)
h = self.to_out(h)
return h
|